feat(ivy): compile @Injectable on classes not meant for DI (#28523)

In the past, @Injectable had no side effects and existing Angular code is
therefore littered with @Injectable usage on classes which are not intended
to be injected.

A common example is:

@Injectable()
class Foo {
  constructor(private notInjectable: string) {}
}

and somewhere else:

providers: [{provide: Foo, useFactory: ...})

Here, there is no need for Foo to be injectable - indeed, it's impossible
for the DI system to create an instance of it, as it has a non-injectable
constructor. The provider configures a factory for the DI system to be
able to create instances of Foo.

Adding @Injectable in Ivy signifies that the class's own constructor, and
not a provider, determines how the class will be created.

This commit adds logic to compile classes which are marked with @Injectable
but are otherwise not injectable, and create an ngInjectableDef field with
a factory function that throws an error. This way, existing code in the wild
continues to compile, but if someone attempts to use the injectable it will
fail with a useful error message.

In the case where strictInjectionParameters is set to true, a compile-time
error is thrown instead of the runtime error, as ngtsc has enough
information to determine when injection couldn't possibly be valid.

PR Close #28523
This commit is contained in:
Alex Rickabaugh
2019-01-31 14:23:54 -08:00
committed by Misko Hevery
parent f8b67712bc
commit d2742cf473
12 changed files with 264 additions and 40 deletions

View File

@ -22,7 +22,7 @@ export interface R3InjectableMetadata {
name: string;
type: o.Expression;
typeArgumentCount: number;
ctorDeps: R3DependencyMetadata[]|null;
ctorDeps: R3DependencyMetadata[]|'invalid'|null;
providedIn: o.Expression;
useClass?: o.Expression;
useFactory?: o.Expression;
@ -46,11 +46,14 @@ export function compileInjectable(meta: R3InjectableMetadata): InjectableDef {
// used to instantiate the class with dependencies injected, or deps are not specified and
// the factory of the class is used to instantiate it.
//
// A special case exists for useClass: Type where Type is the injectable type itself, in which
// case omitting deps just uses the constructor dependencies instead.
// A special case exists for useClass: Type where Type is the injectable type itself and no
// deps are specified, in which case 'useClass' is effectively ignored.
const useClassOnSelf = meta.useClass.isEquivalent(meta.type);
const deps = meta.userDeps || (useClassOnSelf && meta.ctorDeps) || undefined;
let deps: R3DependencyMetadata[]|undefined = undefined;
if (meta.userDeps !== undefined) {
deps = meta.userDeps;
}
if (deps !== undefined) {
// factory: () => new meta.useClass(...deps)
@ -60,6 +63,8 @@ export function compileInjectable(meta: R3InjectableMetadata): InjectableDef {
delegateDeps: deps,
delegateType: R3FactoryDelegateType.Class,
});
} else if (useClassOnSelf) {
result = compileFactoryFunction(factoryMeta);
} else {
result = compileFactoryFunction({
...factoryMeta,

View File

@ -40,9 +40,11 @@ export interface R3ConstructorFactoryMetadata {
* Regardless of whether `fnOrClass` is a constructor function or a user-defined factory, it
* may have 0 or more parameters, which will be injected according to the `R3DependencyMetadata`
* for those parameters. If this is `null`, then the type's constructor is nonexistent and will
* be inherited from `fnOrClass` which is interpreted as the current type.
* be inherited from `fnOrClass` which is interpreted as the current type. If this is `'invalid'`,
* then one or more of the parameters wasn't resolvable and any attempt to use these deps will
* result in a runtime error.
*/
deps: R3DependencyMetadata[]|null;
deps: R3DependencyMetadata[]|'invalid'|null;
/**
* An expression for the function which will be used to inject dependencies. The API of this
@ -152,7 +154,9 @@ export function compileFactoryFunction(meta: R3FactoryMetadata):
let ctorExpr: o.Expression|null = null;
if (meta.deps !== null) {
// There is a constructor (either explicitly or implicitly defined).
ctorExpr = new o.InstantiateExpr(typeForCtor, injectDependencies(meta.deps, meta.injectFn));
if (meta.deps !== 'invalid') {
ctorExpr = new o.InstantiateExpr(typeForCtor, injectDependencies(meta.deps, meta.injectFn));
}
} else {
const baseFactory = o.variable(`ɵ${meta.name}_BaseFactory`);
const getInheritedFactory = o.importExpr(R3.getInheritedFactory);
@ -173,7 +177,13 @@ export function compileFactoryFunction(meta: R3FactoryMetadata):
function makeConditionalFactory(nonCtorExpr: o.Expression): o.ReadVarExpr {
const r = o.variable('r');
body.push(r.set(o.NULL_EXPR).toDeclStmt());
body.push(o.ifStmt(t, [r.set(ctorExprFinal).toStmt()], [r.set(nonCtorExpr).toStmt()]));
let ctorStmt: o.Statement|null = null;
if (ctorExprFinal !== null) {
ctorStmt = r.set(ctorExprFinal).toStmt();
} else {
ctorStmt = makeErrorStmt(meta.name);
}
body.push(o.ifStmt(t, [ctorStmt], [r.set(nonCtorExpr).toStmt()]));
return r;
}
@ -207,10 +217,16 @@ export function compileFactoryFunction(meta: R3FactoryMetadata):
retExpr = ctorExpr;
}
if (retExpr !== null) {
body.push(new o.ReturnStatement(retExpr));
} else {
body.push(makeErrorStmt(meta.name));
}
return {
factory: o.fn(
[new o.FnParam('t', o.DYNAMIC_TYPE)], [...body, new o.ReturnStatement(retExpr)],
o.INFERRED_TYPE, undefined, `${meta.name}_Factory`),
[new o.FnParam('t', o.DYNAMIC_TYPE)], body, o.INFERRED_TYPE, undefined,
`${meta.name}_Factory`),
statements,
};
}
@ -292,6 +308,13 @@ export function dependenciesFromGlobalMetadata(
return deps;
}
function makeErrorStmt(name: string): o.Statement {
return new o.ThrowStmt(new o.InstantiateExpr(new o.ReadVarExpr('Error'), [
o.literal(
`${name} has a constructor which is not compatible with Dependency Injection. It should probably not be @Injectable().`)
]));
}
function isDelegatedMetadata(meta: R3FactoryMetadata): meta is R3DelegatedFactoryMetadata|
R3DelegatedFnOrClassMetadata {
return (meta as any).delegateType !== undefined;