This commit refactors the `ExpressionTranslatorVisitor` so that it
is not tied directly to the TypeScript AST. Instead it uses generic
`TExpression` and `TStatement` types that are then converted
to concrete types by the `TypeScriptAstFactory`.
This paves the way for a `BabelAstFactory` that can be used to
generate Babel AST nodes instead of TypeScript, which will be
part of the new linker tool.
PR Close#38775
Common AST formats such as TS and Babel do not use a separate
node for comments, but instead attach comments to other AST nodes.
Previously this was worked around in TS by creating a `NotEmittedStatement`
AST node to attach the comment to. But Babel does not have this facility,
so it will not be a viable approach for the linker.
This commit refactors the output AST, to remove the `CommentStmt` and
`JSDocCommentStmt` nodes. Instead statements have a collection of
`leadingComments` that are rendered/attached to the final AST nodes
when being translated or printed.
PR Close#38811
The `fs.relative()` method assumed that the file-system is a single tree,
which is not the case in Windows, where you can have multiple drives,
e.g. `C:`, `D:` etc.
This commit changes `fs.relative()` so that it no longer forces the result
to be a `PathSegment` and then flows that refactoring through the rest of
the compiler-cli (and ngcc). The main difference is that now, in some cases,
we needed to check whether the result is "rooted", i.e an `AbsoluteFsPath`,
rather than a `PathSegment`, before using it.
Fixes#36777
PR Close#37959
Webpack and other build tools sometimes inline the contents of the
source files in their generated source-maps, and at the same time
change the paths to be prefixed with a protocol, such as `webpack://`.
This can confuse tools that need to read these paths, so now it is
possible to provide a mapping to where these files originated.
PR Close#32912
The `SourceFile` and associated code is general and reusable in
other projects (such as `@angular/localize`). Moving it to `ngtsc`
makes it more easily shared.
PR Close#37114
The `Logger` interface and its related classes are general purpose
and could be used by other tooling. Moving it into ngtsc is a more
suitable place from which to share it - similar to the FileSystem stuff.
PR Close#37114
Adds @nocollapse to static properties added by ngcc
iff annotateForClosureCompiler is true.
The Closure Compiler will collapse static properties
into the global namespace. Adding this annotation keeps
the properties attached to their respective object, which
allows them to be referenced via a class's constructor.
The annotation is already added by ngtsc and ngc under the
same option, this commit extends the functionality to ngcc.
Closes#36618.
PR Close#36652
Inline source-maps in typings files can impact IDE performance
so ngcc should only add such maps if the original typings file
contains inline source-maps.
Fixes#37324
PR Close#37363
After the refactoring of the reflection hosts to accommodate
ES2015 classes wrapped in IIFEs. The same treatment needs to
be applied to the rendering formatters.
PR Close#36989
In #36892 the `ModuleWithProviders` type parameter becomes required.
This exposes a bug in ngcc, where it can only handle functions that have a
specific form:
```
function forRoot() {
return { ... };
}
```
In other words, it only accepts functions that return an object literal.
In some libraries, the function instead returns a call to another function.
For example in `angular-in-memory-web-api`:
```
InMemoryWebApiModule.forFeature = function (dbCreator, options) {
return InMemoryWebApiModule_1.forRoot(dbCreator, options);
};
```
This commit changes the parsing of such functions to use the
`PartialEvaluator`, which can evaluate these more complex function
bodies.
PR Close#36948
The source-map flattening was throwing an error when there
is a cyclic dependency between source files and source-maps.
The error was either a custom one describing the cycle, or a
"Maximum call stack size exceeded" one.
Now this is handled more leniently, resulting in a partially loaded
source file (or source-map) and a warning logged.
Fixes#35727Fixes#35757
Fixes https://github.com/angular/angular-cli/issues/17106
Fixes https://github.com/angular/angular-cli/issues/17115
PR Close#36452
This commit augments the `FactoryDef` declaration of Angular decorated
classes to contain information about the parameter decorators used in
the constructor. If no constructor is present, or none of the parameters
have any Angular decorators, then this will be represented using the
`null` type. Otherwise, a tuple type is used where the entry at index `i`
corresponds with parameter `i`. Each tuple entry can be one of two types:
1. If the associated parameter does not have any Angular decorators,
the tuple entry will be the `null` type.
2. Otherwise, a type literal is used that may declare at least one of
the following properties:
- "attribute": if `@Attribute` is present. The injected attribute's
name is used as string literal type, or the `unknown` type if the
attribute name is not a string literal.
- "self": if `@Self` is present, always of type `true`.
- "skipSelf": if `@SkipSelf` is present, always of type `true`.
- "host": if `@Host` is present, always of type `true`.
- "optional": if `@Optional` is present, always of type `true`.
A property is only present if the corresponding decorator is used.
Note that the `@Inject` decorator is currently not included, as it's
non-trivial to properly convert the token's value expression to a
type that is valid in a declaration file.
Additionally, the `ComponentDefWithMeta` declaration that is created for
Angular components has been extended to include all selectors on
`ng-content` elements within the component's template.
This additional metadata is useful for tooling such as the Angular
Language Service, as it provides the ability to offer suggestions for
directives/components defined in libraries. At the moment, such
tooling extracts the necessary information from the _metadata.json_
manifest file as generated by ngc, however this metadata representation
is being replaced by the information emitted into the declaration files.
Resolves FW-1870
PR Close#35695
Source-maps in the wild could be badly formatted,
causing the source-map flattening processing to fail
unexpectedly. Rather than causing the whole of ngcc
to crash, we gracefully fallback to just returning the
generated source-map instead.
PR Close#35718
The library used by ngcc to update the source files (MagicString) is able
to generate a source-map but it is not able to account for any previous
source-map that the input text is already associated with.
There have been various attempts to fix this but none have been very
successful, since it is not a trivial problem to solve.
This commit contains a novel approach that is able to load up a tree of
source-files connected by source-maps and flatten them down into a single
source-map that maps directly from the final generated file to the original
sources referenced by the intermediate source-maps.
PR Close#35132
In #34288, ngtsc was refactored to separate the result of the analysis
and resolve phase for more granular incremental rebuilds. In this model,
any errors in one phase transition the trait into an error state, which
prevents it from being ran through subsequent phases. The ngcc compiler
on the other hand did not adopt this strict error model, which would
cause incomplete metadata—due to errors in earlier phases—to be offered
for compilation that could result in a hard crash.
This commit updates ngcc to take advantage of ngtsc's `TraitCompiler`,
that internally manages all Ivy classes that are part of the
compilation. This effectively replaces ngcc's own `AnalyzedFile` and
`AnalyzedClass` types, together with all of the logic to drive the
`DecoratorHandler`s. All of this is now handled in the `TraitCompiler`,
benefiting from its explicit state transitions of `Trait`s so that the
ngcc crash is a thing of the past.
Fixes#34500
Resolves FW-1788
PR Close#34889
If a class was defined as a class expression
in a variable declaration, the definitions
were being inserted before the statment's
final semi-colon.
Now the insertion point will be after the
full statement.
Fixes#34648
PR Close#34677
In some cases, where a module imports a dependency
but does not actually use it, UMD bundlers may remove
the dependency parameter from the UMD factory function
definition.
For example:
```
import * as x from 'x';
import * as z from 'z';
export const y = x;
```
may result in a UMD bundle including:
```
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ?
factory(exports, require('x'), require('z')) :
typeof define === 'function' && define.amd ?
define(['exports', 'x', 'z'], factory) :
(global = global || self, factory(global.myBundle = {}, global.x));
}(this, (function (exports, x) { 'use strict';
...
})));
```
Note that while the `z` dependency is provide in the call,
the factory itself only accepts `exports` and `x` as parameters.
Previously ngcc appended new dependencies to the end of the factory
function, but this breaks in the above scenario. Now the new
dependencies are prefixed at the front of parameters/arguments
already in place.
Fixes#34653
PR Close#34660
While different, CommonJS and UMD have a lot in common regarding the
their exports are constructed. Therefore, there was some code
duplication between `CommonJsReflectionHost` and `UmdReflectionHost`.
This commit extracts some of the common bits into a separate file as
helpers to allow reusing the code in both `ReflectionHost`s.
PR Close#34512
Previously, if `UmdRenderingFormatter#addImports()` was called with an
empty list of imports to add (i.e. no new imports were needed), it would
add trailing commas in several locations (arrays, function arguments,
function parameters), thus making the code imcompatible with legacy
browsers such as IE11.
This commit fixes it by ensuring that no trailing commas are added if
`addImports()` is called with an empty list of imports.
This is a follow-up to #34353.
Fixes#34525
PR Close#34545
Now that the source to typings matching is able to handle
aliasing of exports, there is no need to handle aliases in private
declarations analysis.
These were originally added to cope when the typings files had
to use the name that the original source files used when exporting.
PR Close#34254
Previously the UMD rendering formatter assumed that
there would already be import (and an export) arguments
to the UMD factory function.
This commit adds support for this corner case.
Fixes#34138
PR Close#34353
Previously, ngcc's `Renderer` would add some constants in the processed
files which were emitted as ES2015 code (e.g. `const` declarations).
This would result in invalid ES5 generated code that would break when
run on browsers that do not support the emitted format.
This commit fixes it by adding a `printStatement()` method to
`RenderingFormatter`, which can convert statements to JavaScript code in
a suitable format for the corresponding `RenderingFormatter`.
Additionally, the `translateExpression()` and `translateStatement()`
ngtsc helper methods are augmented to accept an extra hint to know
whether the code needs to be translated to ES5 format or not.
Fixes#32665
PR Close#33514
Previously we only removed `__decorate()` calls that looked like:
```
SomeClass = __decorate(...);
```
But in some minified scenarios this call gets wrapped up with the
return statement of the IIFE.
```
return SomeClass = __decorate(...);
```
This is now removed also, leaving just the return statement:
```
return SomeClass;
```
PR Close#33777
Previously the renderers were fixed so that they inserted extra
"adjacent" statements after the last static property of classes.
In order to help the build-optimizer (in Angular CLI) to be able to
tree-shake classes effectively, these statements should also appear
after any helper calls, such as `__decorate()`.
This commit moves the computation of this positioning into the
`NgccReflectionHost` via the `getEndOfClass()` method, which
returns the last statement that is related to the class.
FW-1668
PR Close#33689
When ngcc is configured to generate reexports for a package using the
`generateDeepReexports` configuration option, it could incorrectly
render the reexports as often as the number of compiled classes in the
declaration file. This would cause compilation errors due to duplicated
declarations.
PR Close#33658
When decorating classes with ivy definitions (e.g. `ɵfac` or `ɵdir`)
the inner name of the class declaration must be used.
This is because in ES5 the definitions are inside the class's IIFE
where the outer declaration has not yet been initialized.
PR Close#33533
In ngcc's migration system, synthetic decorators can be injected into a
compilation to ensure that certain classes are compiled with Angular
logic, where the original library code did not include the necessary
decorators. Prior to this change, synthesized decorators would have a
fake AST structure as associated node and a made-up identifier. In
theory, this may introduce issues downstream:
1) a decorator's node is used for diagnostics, so it must have position
information. Having fake AST nodes without a position is therefore a
problem. Note that this is currently not a problem in practice, as
injected synthesized decorators would not produce any diagnostics.
2) the decorator's identifier should refer to an imported symbol.
Therefore, it is required that the symbol is actually imported.
Moreover, bundle formats such as UMD and CommonJS use namespaces for
imports, so a bare `ts.Identifier` would not be suitable to use as
identifier. This was also not a problem in practice, as the identifier
is only used in the `setClassMetadata` generated code, which is omitted
for synthetically injected decorators.
To remedy these potential issues, this commit makes a decorator's
identifier optional and switches its node over from a fake AST structure
to the class' name.
PR Close#33362
This commit adapts the private NgModule re-export system (using aliasing) to
ngcc. Not all ngcc compilations are compatible with these re-exports, as
they assume a 1:1 correspondence between .js and .d.ts files. The primary
concern here is supporting them for commonjs-only packages.
PR Close#33177
Previously we were looking for a global factory call that looks like:
```ts
(factory((global.ng = global.ng || {}, global.ng.common = {}), global.ng.core))"
```
but in some cases it looks like:
```ts
(global = global || self, factory((global.ng = global.ng || {}, global.ng.common = {}), global.ng.core))"
```
Note the `global = global || self` at the start of the statement.
This commit makes the test when finding the global factory
function call resilient to being in a comma list.
PR Close#32709
In ngcc's reflection hosts for compiled JS bundles, such as ESM2015,
special care needs to be taken for classes as there may be an outer
declaration (referred to as "declaration") and an inner declaration
(referred to as "implementation") for a given class. Therefore, there
will also be two `ts.Symbol`s bound per class, and ngcc needs to switch
between those declarations and symbols depending on where certain
information can be found.
Prior to this commit, the `NgccReflectionHost` interface had methods
`getClassSymbol` and `findClassSymbols` that would return a `ts.Symbol`.
These class symbols would be used to kick off compilation of components
using ngtsc, so it is important for these symbols to correspond with the
publicly visible outer declaration of the class. However, the ESM2015
reflection host used to return the `ts.Symbol` for the inner
declaration, if the class was declared as follows:
```javascript
var MyClass = class MyClass {};
```
For the above code, `Esm2015ReflectionHost.getClassSymbol` would return
the `ts.Symbol` corresponding with the `class MyClass {}` declaration,
whereas it should have corresponded with the `var MyClass` declaration.
As a consequence, no `NgModule` could be resolved for the component, so
no components/directives would be in scope for the component. This
resulted in errors during runtime.
This commit resolves the issue by introducing a `NgccClassSymbol` that
contains references to both the outer and inner `ts.Symbol`, instead of
just a single `ts.Symbol`. This avoids the unclarity of whether a
`ts.Symbol` corresponds with the outer or inner declaration.
More details can be found here: https://hackmd.io/7nkgWOFWQlSRAuIW_8KPPwFixes#32078
Closes FW-1507
PR Close#32539
This commit changes the emit order of ngcc when a class has multiple static
fields being assigned. Previously, ngcc would emit each static field
followed immediately by any extra statements specified for that field. This
causes issues with downstream tooling such as build optimizer, which expects
all of the static fields for a class to be grouped together. ngtsc already
groups static fields and additional statements. This commit changes ngcc's
ordering to match.
PR Close#31933
To improve cross platform support, all file access (and path manipulation)
is now done through a well known interface (`FileSystem`).
For testing a number of `MockFileSystem` implementations are provided.
These provide an in-memory file-system which emulates operating systems
like OS/X, Unix and Windows.
The current file system is always available via the static method,
`FileSystem.getFileSystem()`. This is also used by a number of static
methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass
`FileSystem` objects around all the time. The result of this is that one
must be careful to ensure that the file-system has been initialized before
using any of these static methods. To prevent this happening accidentally
the current file system always starts out as an instance of `InvalidFileSystem`,
which will throw an error if any of its methods are called.
You can set the current file-system by calling `FileSystem.setFileSystem()`.
During testing you can call the helper function `initMockFileSystem(os)`
which takes a string name of the OS to emulate, and will also monkey-patch
aspects of the TypeScript library to ensure that TS is also using the
current file-system.
Finally there is the `NgtscCompilerHost` to be used for any TypeScript
compilation, which uses a given file-system.
All tests that interact with the file-system should be tested against each
of the mock file-systems. A series of helpers have been provided to support
such tests:
* `runInEachFileSystem()` - wrap your tests in this helper to run all the
wrapped tests in each of the mock file-systems.
* `addTestFilesToFileSystem()` - use this to add files and their contents
to the mock file system for testing.
* `loadTestFilesFromDisk()` - use this to load a mirror image of files on
disk into the in-memory mock file-system.
* `loadFakeCore()` - use this to load a fake version of `@angular/core`
into the mock file-system.
All ngcc and ngtsc source and tests now use this virtual file-system setup.
PR Close#30921
Currently undecorated classes are intentionally not processed
with ngcc. This is causing unexpected behavior because decorator
handlers such as `base_def.ts` are specifically interested in class
definitions without top-level decorators, so that the base definition
can be generated if there are Angular-specific class members.
In order to ensure that undecorated base-classes work as expected
with Ivy, we need to run the decorator handlers for all top-level
class declarations (not only for those with decorators). This is similar
to when `ngtsc` runs decorator handlers when analyzing source-files.
Resolves FW-1355. Fixes https://github.com/angular/components/issues/16178
PR Close#30821
Previously the same `Renderer` was used to render typings (.d.ts)
files. But the new `UmdRenderer` is not able to render typings files
correctly.
This commit splits out the typings rendering from the src rendering.
To achieve this the previous renderers have been refactored from
sub-classes of the abstract `Renderer` class to classes that implement
the `RenderingFormatter` interface, which are then passed to the
`Renderer` and `DtsRenderer` to modify its rendering behaviour.
Along the way a few utility interfaces and classes have been moved
around and renamed for clarity.
PR Close#25445
Previously we were using an anonymous type `{specifier: string; qualifier: string;}`
throughout the code base. This commit gives this type a name and ensures it
is only defined in one place.
PR Close#25445
This commit introduces a new interface, which abstracts access
to the underlying `FileSystem`. There is initially one concrete
implementation, `NodeJsFileSystem`, which is simply wrapping the
`fs` library of NodeJs.
Going forward, we can provide a `MockFileSystem` for test, which
should allow us to stop using `mock-fs` for most of the unit tests.
We could also implement a `CachedFileSystem` that may improve the
performance of ngcc.
PR Close#29643
The `Transformer` and `Renderer` classes do not
actually need a `sourcePath` value as by the time
they are doing their work we are only working directly
with full absolute paths.
PR Close#29643
Previously, ngcc would insert new imports at the beginning of the file, for
convenience. This is problematic for imports that have side-effects, as the
side-effects imposed by such imports may affect the behavior of subsequent
imports.
This commit teaches ngcc to insert imports after any existing imports. Special
care has been taken to ensure inserted constants will still follow after the
inserted imports.
Resolves FW-1271
PR Close#30029