This finder is designed to only process entry-points that are reachable
by the program defined by a tsconfig.json file.
It is triggered by calling `mainNgcc()` with the `findEntryPointsFromTsConfigProgram`
option set to true. It is ignored if a `targetEntryPointPath` has been
provided as well.
It is triggered from the command line by adding the `--use-program-dependencies`
option, which is also ignored if the `--target` option has been provided.
Using this option can speed up processing in cases where there is a large
number of dependencies installed but only a small proportion of the
entry-points are actually imported into the application.
PR Close#37075
The commit adds support to the ngcc.config.js file for setting the
`retryAttempts` and `retryDelay` options for the `AsyncLocker`.
An integration test adds a new check for a timeout and actually uses the
ngcc.config.js to reduce the timeout time to prevent the test from taking
too long to complete.
PR Close#36838
Now that `ngcc/src/ngcc_options` imports `FileWriter` type, there is a
circular dependency detected by the `ts-circular-deps:check` lint check:
```
ngcc/src/ngcc_options.ts
→ ngcc/src/writing/file_writer.ts
→ ngcc/src/packages/entry_point_bundle.ts
→ ngcc/src/ngcc_options.ts
```
This commit moves the `PathMappings` type (and related helpers) to a
separate file to avoid the circular dependency.
NOTE:
The circular dependency was only with taking types into account. There
was no circular dependency for the actual (JS) code.
PR Close#36626
Previously, when running in parallel mode and a worker process crashed
while processing a task, it was not possible for ngcc to continue
without risking ending up with a corrupted entry-point and therefore it
exited with an error. This, for example, could happen when a worker
process received a `SIGKILL` signal, which was frequently observed in CI
environments. This was probably the result of Docker killing processes
due to increased memory pressure.
One factor that amplifies the problem under Docker (which is often used
in CI) is that it is not possible to distinguish between the available
CPU cores on the host machine and the ones made available to Docker
containers, thus resulting in ngcc spawning too many worker processes.
This commit addresses these issues in the following ways:
1. We take advantage of the fact that files are written to disk only
after an entry-point has been fully analyzed/compiled. The master
process can now determine whether a worker process has not yet
started writing files to disk (even if it was in the middle of
processing a task) and just put the task back into the tasks queue if
the worker process crashes.
2. The master process keeps track of the transformed files that a worker
process will attempt to write to disk. If the worker process crashes
while writing files, the master process can revert any changes and
put the task back into the tasks queue (without risking corruption).
3. When a worker process crashes while processing a task (which can be a
result of increased memory pressure or too many worker processes),
the master process will not try to re-spawn it. This way the number
or worker processes is gradually adjusted to a level that can be
accomodated by the system's resources.
Examples of ngcc being able to recover after a worker process crashed:
- While idling: https://circleci.com/gh/angular/angular/682197
- While compiling: https://circleci.com/gh/angular/angular/682209
- While writing files: https://circleci.com/gh/angular/angular/682267
Jira issue: [FW-2008](https://angular-team.atlassian.net/browse/FW-2008)
Fixes#36278
PR Close#36626
Previously, ngcc would run in parallel mode (using the
`ClusterExecutor`) when there were at least 2 CPU cores (and all other
requirements where met). On systems with just 2 CPU cores, this meant
there would only be one worker process (since one CPU core is always
reserved for the master process). In these cases, the tasks would still
be processed serially (on the one worker process), but we would also pay
the overhead of communicating between the master and worker processes.
This commit fixes this by only running in parallel mode if there are
more than 2 CPU cores (i.e. at least 2 worker processes).
PR Close#36626
The current ngcc lock-file strategy spawns a new process in order to
capture a potential `SIGINT` and remove the lock-file. For more
information see #35861.
Previously, this unlocker process was spawned as soon as the `LockFile`
was instantiated in order to have it available as soon as possible
(given that spawning a process is an asynchronous operation). Since the
`LockFile` was instantiated and passed to the `Executor`, this meant
that an unlocker process was spawned for each cluster worker, when
running ngcc in parallel mode. These processes were not needed, since
the `LockFile` was not used in cluster workers, but we still had to pay
the overhead of each process' own memory and V8 instance.
(NOTE: This overhead was small compared to the memory consumed by ngcc's
normal operations, but still unnecessary.)
This commit avoids the extra processes by only spawning an unlocker
process when running on the cluster master process and not on worker
processes.
PR Close#36569
Previously ngcc never preserved whitespaces but this is at odds
with how the ViewEngine compiler works. In ViewEngine, library
templates are recompiled with the current application's tsconfig
settings, which meant that whitespace preservation could be set
in the application tsconfig file.
This commit allows ngcc to use the `preserveWhitespaces` setting
from tsconfig when compiling library templates. One should be aware
that this disallows different projects with different tsconfig settings
to share the same node_modules folder, with regard to whitespace
preservation. But this is already the case in the current ngcc since
this configuration is hard coded right now.
Fixes#35871
PR Close#36189
When computing the dependencies between packages which are not in
node_modules, we may need to rely upon path-mappings to find the path
to the imported entry-point.
This commit allows ngcc to use the path-mappings from a tsconfig
file to find dependencies. By default any tsconfig.json file in the directory
above the `basePath` is loaded but it is possible to use a path to a
specific file by providing the `tsConfigPath` property to mainNgcc,
or to turn off loading any tsconfig file by setting `tsConfigPath` to `null`.
At the command line this is controlled via the `--tsconfig` option.
Fixes#36119
PR Close#36180
When two entry-points overlap, ngcc may attempt to process some
files twice. Previously, when this occured ngcc would just exit with an
error preventing any other entry-points from being processed.
This commit changes ngcc so that if `errorOnFailedEntryPoint` is false, it will
simply log an error and continue to process entry-points. This is useful when
ngcc is processing the entire node_modules folder and there are some invalid
entry-points that the project doesn't actually use.
PR Close#36083
Previously, when an entry-point contained code that caused its compilation
to fail, ngcc would exit in the middle of processing, possibly leaving other
entry-points in a corrupt state.
This change adds a new `errorOnFailedEntryPoint` option to `mainNgcc` that
specifies whether ngcc should exit immediately or log an error and continue
processing other entry-points.
The default is `false` so that ngcc will not error but continue processing
as much as possible. This is useful in post-install hooks, and async CLI
integration, where we do not have as much control over which entry-points
should be processed.
The option is forced to true if the `targetEntryPointPath` is provided,
such as the sync integration with the CLI, since in that case it is targeting
an entry-point that will actually be used in the current project so we do want
ngcc to exit with an error at that point.
PR Close#36083
Later when we implement the ability to continue processing when tasks have
failed to compile, we will also need to avoid processing tasks that depend
upon the failed task.
This refactoring exposes this list of dependent tasks in a way that can be
used to skip processing of tasks that depend upon a failed task.
It also changes the blocking model of the parallel mode of operation so
that non-typings tasks are now blocked on their corresponding typings task.
Previously the non-typings tasks could be triggered to run in parallel to
the typings task, since they do not have a hard dependency on each other,
but this made it difficult to skip task correctly if the typings task failed,
since it was possible that a non-typings task was already in flight when
the typings task failed. The result of this is a small potential degradation
of performance in async parallel processing mode, in the rare cases that
there were not enough unblocked tasks to make use of all the available
workers.
PR Close#36083
Moving the definition of the `onTaskCompleted` callback into `mainNgcc()`
allows it to be configured based on options passed in there more easily.
This will be the case when we want to configure whether to log or throw
an error for tasks that failed to be processed successfully.
This commit also creates two new folders and moves the code around a bit
to make it easier to navigate the code§:
* `execution/tasks`: specific helpers such as task completion handlers
* `execution/tasks/queues`: the `TaskQueue` implementations and helpers
PR Close#36083
In some scenarios it is useful for the developer to indicate
to ngcc that it should not use the entry-point manifest
file, and instead write a new one.
In the ngcc command line tool, this option is set by specfying
```
--invalidate-entry-point-manifest
```
PR Close#35931
The `DirectoryWalkerEntryPointFinder` has to traverse the
entire node_modules library everytime it executes in order to
identify the entry-points that need to be processed. This is
very time consuming (several seconds for big projects on
Windows).
This commit changes the `DirectoryWalkerEntryPointFinder` to
use the `EntryPointManifest` to store the paths to entry-points
that were found when doing this initial node_modules traversal
in a file to be reused for subsequent calls.
This dramatically speeds up ngcc processing when it has been run once
already.
PR Close#35931
This version of `LockFile` creates an "unlocker" child-process that monitors
the main ngcc process and deletes the lock file if it exits unexpectedly.
This resolves the issue where the main process could not be killed by pressing
Ctrl-C at the terminal.
Fixes#35761
PR Close#35861
The previous implementation mixed up the management
of locking a piece of code (both sync and async) with the
management of writing and removing the lockFile that is
used as the flag for which process has locked the code.
This change splits these two concepts up. Apart from
avoiding the awkward base class it allows the `LockFile`
implementation to be replaced cleanly.
PR Close#35861
This commit adds a new ngcc configuration, `ignorableDeepImportMatchers`
for packages. This is a list of regular expressions matching deep imports
that can be safely ignored from that package. Deep imports that are not
ignored cause a warning to be logged.
// FW-1892
Fixes#35615
PR Close#35683
ngcc uses a lockfile to prevent two ngcc instances from executing at the
same time. Previously, if a lockfile was found the current process would
error and exit.
Now, when in async mode, the current process is able to wait for the previous
process to release the lockfile before continuing itself.
PR Close#35131
To support parallel CLI builds we instruct developers to pre-process
their node_modules via ngcc at the command line.
Despite doing this ngcc was still trying to set a lock when it was being
triggered by the CLI for packages that are not going to be processed,
since they are not compiled by Angular for instance.
This commit checks whether a target package needs to be compiled
at all before attempting to set the lock.
Fixes#35000
PR Close#35057
If ngcc gets updated to a new version then the artifacts
left in packages that were processed by the previous
version are possibly invalid.
Previously we just errored if we found packages that
had already been processed by an outdated version.
Now we automatically clean the packages that have
outdated artifacts so that they can be reprocessed
correctly with the current ngcc version.
Fixes#35082
PR Close#35079
Now `hasBeenProcessed()` will no longer throw if there
is an entry-point that has been built with an outdated
version of ngcc.
Instead it just returns `false`, which will include it in this
processing run.
This is a precursor to adding functionality that will
automatically revert outdate build artifacts.
PR Close#35079
The Angular CLI will continue to call ngcc on all possible packages, even if they
have already been processed by ngcc in a postinstall script.
In a parallel build environment, this was causing ngcc to complain that it was
being run in more than one process at the same time.
This commit moves the check for whether the targeted package has been
processed outside the locked code section, since there is no issue with
multiple ngcc processes from doing this check.
PR Close#34722
Previously, it was possible for multiple instance of ngcc to be running
at the same time, but this is not supported and can cause confusing and
flakey errors at build time.
Now, only one instance of ngcc can run at a time. If a second instance
tries to execute it fails with an appropriate error message.
See https://github.com/angular/angular/issues/32431#issuecomment-571825781
PR Close#34722
ngcc computes a dependency graph of entry-points to ensure that
entry-points are processed in the correct order. Previously only the imports
in source files were analysed to determine the dependencies for each
entry-point.
This is not sufficient when an entry-point has a "type-only" dependency
- for example only importing an interface from another entry-point.
In this case the "type-only" import does not appear in the
source code. It only appears in the typings files. This can cause a
dependency to be missed on the entry-point.
This commit fixes this by additionally processing the imports in the
typings program, as well as the source program.
Note that these missing dependencies could cause unexpected flakes when
running ngcc in async mode on multiple processes due to the way that
ngcc caches files when they are first read from disk.
Fixes#34411
// FW-1781
PR Close#34494
By ensuring that legacy i18n message ids are rendered into the templates
of components for packages processed by ngcc, we ensure that these packages
can be used in an application that may provide translations in a legacy
format.
Fixes#34056
PR Close#34135
Placing this configuration in to the bundle avoids having to pass the
value around through lots of function calls, but also could enable
support for different behaviour per bundle in the future.
PR Close#34135
Previously, the list of missing dependencies was not explicitly joined,
which resulted in the default `,` joiner being used during
stringification.
This commit explicitly joins the missing dependency lines to avoid
unnecessary commas.
Before:
```
The target entry-point "some-entry-point" has missing dependencies:
- dependency 1
, - dependency 2
, - dependency 3
```
After:
```
The target entry-point "some-entry-point" has missing dependencies:
- dependency 1
- dependency 2
- dependency 3
```
PR Close#33139
This gives an overview of how much time is spent in each operation/phase
and makes it easy to do rough comparisons of how different
configurations or changes affect performance.
PR Close#32427