39 Commits

Author SHA1 Message Date
George Kalpakas
bd6a39c364 fix(ngcc): correctly detect emitted TS helpers in ES5 (#35191)
In ES5 code, TypeScript requires certain helpers (such as
`__spreadArrays()`) to be able to support ES2015+ features. These
helpers can be either imported from `tslib` (by setting the
`importHelpers` TS compiler option to `true`) or emitted inline (by
setting the `importHelpers` and `noEmitHelpers` TS compiler options to
`false`, which is the default value for both).

Ngtsc's `StaticInterpreter` (which is also used during ngcc processing)
is able to statically evaluate some of these helpers (currently
`__assign()`, `__spread()` and `__spreadArrays()`), as long as
`ReflectionHost#getDefinitionOfFunction()` correctly detects the
declaration of the helper. For this to happen, the left-hand side of the
corresponding call expression (i.e. `__spread(...)` or
`tslib.__spread(...)`) must be evaluated as a function declaration for
`getDefinitionOfFunction()` to be called with.

In the case of imported helpers, the `tslib.__someHelper` expression was
resolved to a function declaration of the form
`export declare function __someHelper(...args: any[][]): any[];`, which
allows `getDefinitionOfFunction()` to correctly map it to a TS helper.

In contrast, in the case of emitted helpers (and regardless of the
module format: `CommonJS`, `ESNext`, `UMD`, etc.)), the `__someHelper`
identifier was resolved to a variable declaration of the form
`var __someHelper = (this && this.__someHelper) || function () { ... }`,
which upon further evaluation was categorized as a `DynamicValue`
(prohibiting further evaluation by the `getDefinitionOfFunction()`).

As a result of the above, emitted TypeScript helpers were not evaluated
in ES5 code.

---
This commit changes the detection of TS helpers to leverage the existing
`KnownFn` feature (previously only used for built-in functions).
`Esm5ReflectionHost` is changed to always return `KnownDeclaration`s for
TS helpers, both imported (`getExportsOfModule()`) as well as emitted
(`getDeclarationOfIdentifier()`).

Similar changes are made to `CommonJsReflectionHost` and
`UmdReflectionHost`.

The `KnownDeclaration`s are then mapped to `KnownFn`s in
`StaticInterpreter`, allowing it to statically evaluate call expressions
involving any kind of TS helpers.

Jira issue: https://angular-team.atlassian.net/browse/FW-1689

PR Close #35191
2020-02-21 09:06:46 -08:00
George Kalpakas
ba2bf82540 refactor(compiler-cli): fix typo in TypeScriptCompilerHost#getExportsOfModule() error message (#34811)
PR Close #34811
2020-01-23 13:58:37 -08:00
Paul Gschwendtner
6b468f9b2e fix(ngcc): libraries using spread in object literals cannot be processed (#34661)
Consider a library that uses a shared constant for host bindings. e.g.

```ts
export const BASE_BINDINGS= {
  '[class.mat-themed]': '_isThemed',
}

----

@Directive({
  host: {...BASE_BINDINGS, '(click)': '...'}
})
export class Dir1 {}

@Directive({
  host: {...BASE_BINDINGS, '(click)': '...'}
})
export class Dir2 {}
```

Previously when these components were shipped as part of the
library to NPM, consumers were able to consume `Dir1` and `Dir2`.
No errors showed up.

Now with Ivy, when ngcc tries to process the library, an error
will be thrown. The error is stating that the host bindings should
be an object (which they obviously are). This happens because
TypeScript transforms the object spread to individual
`Object.assign` calls (for compatibility).

The partial evaluator used by the `@Directive` annotation handler
is unable to process this expression because there is no
integrated support for `Object.assign`. In View Engine, this was
not a problem because the `metadata.json` files from the library
were used to compute the host bindings.

Fixes #34659

PR Close #34661
2020-01-23 10:29:57 -08:00
Greg Magolan
aee67f08d9 test: handle bootstrap templated_args in jasmine_node_test defaults.bzl (#34736)
PR Close #34736
2020-01-15 14:58:07 -05:00
Greg Magolan
dcff76e8b9 refactor: handle breaking changes in rules_nodejs 1.0.0 (#34736)
The major one that affects the angular repo is the removal of the bootstrap attribute in nodejs_binary, nodejs_test and jasmine_node_test in favor of using templated_args --node_options=--require=/path/to/script. The side-effect of this is that the bootstrap script does not get the require.resolve patches with explicitly loading the targets _loader.js file.

PR Close #34736
2020-01-15 14:58:07 -05:00
crisbeto
c3c72f689a fix(ivy): handle overloaded constructors in ngtsc (#34590)
Currently ngtsc looks for the first `ConstructorDeclaration` when figuring out what the parameters are so that it can generate the DI instructions. The problem is that if a constructor has overloads, it'll have several `ConstructorDeclaration` members with a different number of parameters. These changes tweak the logic so it looks for the constructor implementation.

PR Close #34590
2020-01-14 15:17:09 -08:00
atscott
538d0446b5 Revert "refactor: handle breaking changes in rules_nodejs 1.0.0 (#34589)" (#34730)
This reverts commit 9bb349e1c8089ee29b82c7234a11ad4256f1d06f.

PR Close #34730
2020-01-10 14:12:15 -08:00
atscott
5e60215470 Revert "test: handle bootstrap templated_args in jasmine_node_test defaults.bzl (#34589)" (#34730)
This reverts commit da4782e67f662d37dccb89f9c642897c1266f4ce.

PR Close #34730
2020-01-10 14:12:15 -08:00
Greg Magolan
da4782e67f test: handle bootstrap templated_args in jasmine_node_test defaults.bzl (#34589)
PR Close #34589
2020-01-10 08:31:59 -08:00
Greg Magolan
9bb349e1c8 refactor: handle breaking changes in rules_nodejs 1.0.0 (#34589)
The major one that affects the angular repo is the removal of the bootstrap attribute in nodejs_binary, nodejs_test and jasmine_node_test in favor of using templated_args --node_options=--require=/path/to/script. The side-effect of this is that the bootstrap script does not get the require.resolve patches with explicitly loading the targets _loader.js file.

PR Close #34589
2020-01-10 08:31:59 -08:00
Pete Bacon Darwin
570574df5b fix(ngcc): don't crash if symbol has no declarations (#34658)
In some cases TypeScript is unable to identify a valid
symbol for an export. In this case it returns an "unknown"
symbol, which does not reference any declarations.

This fix ensures that ngcc does not crash if such a symbol
is encountered by checking whether `symbol.declarations`
exists before accessing it.

The commit does not contain a unit test as it was not possible
to recreate a scenario that had such an "unknown" symbol in
the unit test environment. The fix has been manually checked
against that original issue; and also this check is equivalent to
similar checks elsewhere in the code, e.g.

https://github.com/angular/angular/blob/8d0de89e/packages/compiler-cli/src/ngtsc/reflection/src/typescript.ts#L309

Fixes #34560

PR Close #34658
2020-01-08 15:07:10 -08:00
Alan Agius
d749dd3ea1 fix(ngcc): handle new __spreadArrays tslib helper (#33617)
We already have special cases for the `__spread` helper function and with this change we handle the new tslib helper introduced in version 1.10 `__spreadArrays`.

For more context see: https://github.com/microsoft/tslib/releases/tag/1.10.0

Fixes: #33614

PR Close #33617
2019-11-06 19:43:07 +00:00
Alex Rickabaugh
8d0de89ece refactor(ivy): split type into type, internalType and adjacentType (#33533)
When compiling an Angular decorator (e.g. Directive), @angular/compiler
generates an 'expression' to be added as a static definition field
on the class, a 'type' which will be added for that field to the .d.ts
file, and a statement adjacent to the class that calls `setClassMetadata()`.

Previously, the same WrappedNodeExpr of the class' ts.Identifier was used
within each of this situations.

In the ngtsc case, this is proper. In the ngcc case, if the class being
compiled is within an ES5 IIFE, the outer name of the class may have
changed. Thus, the class has both an inner and outer name. The outer name
should continue to be used elsewhere in the compiler and in 'type'.

The 'expression' will live within the IIFE, the `internalType` should be used.
The adjacent statement will also live within the IIFE, the `adjacentType` should be used.

This commit introduces `ReflectionHost.getInternalNameOfClass()` and
`ReflectionHost.getAdjacentNameOfClass()`, which the compiler can use to
query for the correct name to use.

PR Close #33533
2019-11-05 17:25:01 +00:00
Pete Bacon Darwin
1d141a8ab1 fix(compiler-cli): attach the correct viaModule to namespace imports (#33495)
Previously declarations that were imported via a namespace import
were given the same `bestGuessOwningModule` as the context
where they were imported to. This causes problems with resolving
`ModuleWithProviders` that have a type that has been imported in
this way, causing errors like:

```
ERROR in Symbol UIRouterModule declared in
.../@uirouter/angular/uiRouterNgModule.d.ts
is not exported from
.../@uirouter/angular/uirouter-angular.d.ts
(import into .../src/app/child.module.ts)
```

This commit modifies the `TypescriptReflectionHost.getDirectImportOfIdentifier()`
method so that it also understands how to attach the correct `viaModule` to
the identifier of the namespace import.

Resolves #32166

PR Close #33495
2019-10-31 22:25:48 +00:00
JoostK
3858b26211 refactor(ivy): mark synthetic decorators explicitly (#33362)
In ngcc's migration system, synthetic decorators can be injected into a
compilation to ensure that certain classes are compiled with Angular
logic, where the original library code did not include the necessary
decorators. Prior to this change, synthesized decorators would have a
fake AST structure as associated node and a made-up identifier. In
theory, this may introduce issues downstream:

1) a decorator's node is used for diagnostics, so it must have position
information. Having fake AST nodes without a position is therefore a
problem. Note that this is currently not a problem in practice, as
injected synthesized decorators would not produce any diagnostics.

2) the decorator's identifier should refer to an imported symbol.
Therefore, it is required that the symbol is actually imported.
Moreover, bundle formats such as UMD and CommonJS use namespaces for
imports, so a bare `ts.Identifier` would not be suitable to use as
identifier. This was also not a problem in practice, as the identifier
is only used in the `setClassMetadata` generated code, which is omitted
for synthetically injected decorators.

To remedy these potential issues, this commit makes a decorator's
identifier optional and switches its node over from a fake AST structure
to the class' name.

PR Close #33362
2019-10-25 09:16:49 -07:00
Alex Rickabaugh
c4733c15c0 feat(ivy): enable re-export of the compilation scope of NgModules privately (#33177)
This commit refactors the aliasing system to support multiple different
AliasingHost implementations, which control specific aliasing behavior
in ngtsc (see the README.md).

A new host is introduced, the `PrivateExportAliasingHost`. This solves a
longstanding problem in ngtsc regarding support for "monorepo" style private
libraries. These are libraries which are compiled separately from the main
application, and depended upon through TypeScript path mappings. Such
libraries are frequently not in the Angular Package Format and do not have
entrypoints, but rather make use of deep import style module specifiers.
This can cause issues with ngtsc's ability to import a directive given the
module specifier of its NgModule.

For example, if the application uses a directive `Foo` from such a library
`foo`, the user might write:

```typescript
import {FooModule} from 'foo/module';
```

In this case, foo/module.d.ts is path-mapped into the program. Ordinarily
the compiler would see this as an absolute module specifier, and assume that
the `Foo` directive can be imported from the same specifier. For such non-
APF libraries, this assumption fails. Really `Foo` should be imported from
the file which declares it, but there are two problems with this:

1. The compiler would have to reverse the path mapping in order to determine
   a path-mapped path to the file (maybe foo/dir.d.ts).
2. There is no guarantee that the file containing the directive is path-
   mapped in the program at all.

The compiler would effectively have to "guess" 'foo/dir' as a module
specifier, which may or may not be accurate depending on how the library and
path mapping are set up.

It's strongly desirable that the compiler not break its current invariant
that the module specifier given by the user for the NgModule is always the
module specifier from which directives/pipes are imported. Thus, for any
given NgModule from a particular module specifier, it must always be
possible to import any directives/pipes from the same specifier, no matter
how it's packaged.

To make this possible, when compiling a file containing an NgModule, ngtsc
will automatically add re-exports for any directives/pipes not yet exported
by the user, with a name of the form: ɵngExportɵModuleNameɵDirectiveName

This has several effects:

1. It guarantees anyone depending on the NgModule will be able to import its
   directives/pipes from the same specifier.
2. It maintains a stable name for the exported symbol that is safe to depend
   on from code on NPM. Effectively, this private exported name will be a
   part of the package's .d.ts API, and cannot be changed in a non-breaking
   fashion.

Fixes #29361
FW-1610 #resolve

PR Close #33177
2019-10-22 13:14:31 -04:00
Alex Rickabaugh
de445709d4 fix(ivy): use ReflectionHost to check exports when writing an import (#33192)
This commit fixes ngtsc's import generator to use the ReflectionHost when
looking through the exports of an ES module to find the export of a
particular declaration that's being imported. This is necessary because
some module formats like CommonJS have unusual export mechanics, and the
normal TypeScript ts.TypeChecker does not understand them.

This fixes an issue with ngcc + CommonJS where exports were not being
enumerated correctly.

FW-1630 #resolve

PR Close #33192
2019-10-17 19:43:39 -04:00
JoostK
2279cb8dc0 refactor(ngcc): move ClassSymbol to become NgccClassSymbol (#32539)
PR Close #32539
2019-09-12 11:12:10 -07:00
Alex Rickabaugh
02bab8cf90 fix(ivy): in ngcc, handle inline exports in commonjs code (#32129)
One of the compiler's tasks is to enumerate the exports of a given ES
module. This can happen for example to resolve `foo.bar` where `foo` is a
namespace import:

```typescript
import * as foo from './foo';

@NgModule({
  directives: [foo.DIRECTIVES],
})
```

In this case, the compiler must enumerate the exports of `foo.ts` in order
to evaluate the expression `foo.DIRECTIVES`.

When this operation occurs under ngcc, it must deal with the different
module formats and types of exports that occur. In commonjs code, a problem
arises when certain exports are downleveled.

```typescript
export const DIRECTIVES = [
  FooDir,
  BarDir,
];
```

can be downleveled to:

```javascript
exports.DIRECTIVES = [
  FooDir,
  BarDir,
```

Previously, ngtsc and ngcc expected that any export would have an associated
`ts.Declaration` node. `export class`, `export function`, etc. all retain
`ts.Declaration`s even when downleveled. But the `export const` construct
above does not. Therefore, ngcc would not detect `DIRECTIVES` as an export
of `foo.ts`, and the evaluation of `foo.DIRECTIVES` would therefore fail.

To solve this problem, the core concept of an exported `Declaration`
according to the `ReflectionHost` API is split into a `ConcreteDeclaration`
which has a `ts.Declaration`, and an `InlineDeclaration` which instead has
a `ts.Expression`. Differentiating between these allows ngcc to return an
`InlineDeclaration` for `DIRECTIVES` and correctly keep track of this
export.

PR Close #32129
2019-08-15 14:45:59 -07:00
Pete Bacon Darwin
8a470b9af9 feat(ivy): add getBaseClassIdentifier() to ReflectionHost (#31544)
This method will be useful for writing ngcc `Migrations` that
need to be able to find base classes.

PR Close #31544
2019-07-23 21:11:39 -07:00
Pete Bacon Darwin
399935c32b refactor(ivy): ngtsc - remove unnecessary type on helpers (#31544)
The `ClassDeclaration` already contains the `{name: ts.Identifier}`
type so there is no need to include it explicitly here.

PR Close #31544
2019-07-23 21:11:39 -07:00
Pete Bacon Darwin
dd664f694c fix(ivy): ngcc - render namespaced imported decorators correctly (#31426)
The support for decorators that were imported via a namespace,
e.g. `import * as core from `@angular/core` was implemented
piecemeal. This meant that it was easy to miss situations where
a decorator identifier needed to be handled as a namepsaced
import rather than a direct import.

One such issue was that UMD processing of decorators was not
correct: the namespace was being omitted from references to
decorators.

Now the types have been modified to make it clear that a
`Decorator.identifier` could hold a namespaced identifier,
and the corresponding code that uses these types has been
fixed.

Fixes #31394

PR Close #31426
2019-07-18 10:17:50 -07:00
Pete Bacon Darwin
98a68ad3e7 fix(ivy): handle namespaced imports correctly (#31367)
The ngcc tool adds namespaced imports to files when compiling. The ngtsc
tooling was not processing types correctly when they were imported via
such namespaces. For example:

```
export declare class SomeModule {
    static withOptions(...): ModuleWithProviders<ɵngcc1.BaseModule>;
```

In this case the `BaseModule` was being incorrectly attributed to coming
from the current module rather than the imported module, represented by
`ɵngcc1`.

Fixes #31342

PR Close #31367
2019-07-09 09:40:30 -07:00
Pete Bacon Darwin
7186f9c016 refactor(ivy): implement a virtual file-system layer in ngtsc + ngcc (#30921)
To improve cross platform support, all file access (and path manipulation)
is now done through a well known interface (`FileSystem`).

For testing a number of `MockFileSystem` implementations are provided.
These provide an in-memory file-system which emulates operating systems
like OS/X, Unix and Windows.

The current file system is always available via the static method,
`FileSystem.getFileSystem()`. This is also used by a number of static
methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass
`FileSystem` objects around all the time. The result of this is that one
must be careful to ensure that the file-system has been initialized before
using any of these static methods. To prevent this happening accidentally
the current file system always starts out as an instance of `InvalidFileSystem`,
which will throw an error if any of its methods are called.

You can set the current file-system by calling `FileSystem.setFileSystem()`.
During testing you can call the helper function `initMockFileSystem(os)`
which takes a string name of the OS to emulate, and will also monkey-patch
aspects of the TypeScript library to ensure that TS is also using the
current file-system.

Finally there is the `NgtscCompilerHost` to be used for any TypeScript
compilation, which uses a given file-system.

All tests that interact with the file-system should be tested against each
of the mock file-systems. A series of helpers have been provided to support
such tests:

* `runInEachFileSystem()` - wrap your tests in this helper to run all the
wrapped tests in each of the mock file-systems.
* `addTestFilesToFileSystem()` - use this to add files and their contents
to the mock file system for testing.
* `loadTestFilesFromDisk()` - use this to load a mirror image of files on
disk into the in-memory mock file-system.
* `loadFakeCore()` - use this to load a fake version of `@angular/core`
into the mock file-system.

All ngcc and ngtsc source and tests now use this virtual file-system setup.

PR Close #30921
2019-06-25 16:25:24 -07:00
JoostK
9d9c9e43e5 feat(ivy): static evaluation of TypeScript's __spread helper (#30492)
The usage of array spread syntax in source code may be downleveled to a
call to TypeScript's `__spread` helper function from `tslib`, depending
on the options `downlevelIteration` and `emitHelpers`. This proves
problematic for ngcc when it is processing ES5 formats, as the static
evaluator won't be able to interpret those calls.

A custom foreign function resolver is not sufficient in this case, as
`tslib` may be emitted into the library code itself. In that case, a
helper function can be resolved to an actual function with body, such
that it won't be considered as foreign function. Instead, a reflection
host can now indicate that the definition of a function corresponds with
a certain TypeScript helper, such that it becomes statically evaluable
in ngtsc.

Resolves #30299

PR Close #30492
2019-06-10 23:53:04 +00:00
JoostK
98f8b0f328 fix(ivy): ngcc - properly handle aliases class expressions (#29119)
In ES2015, classes could have been emitted as a variable declaration
initialized with a class expression. In certain situations, an intermediary
variable suffixed with `_1` is present such that the variable
declaration's initializer becomes a binary expression with its rhs being
the class expression, and its lhs being the identifier of the intermediate
variable. This structure was not recognized, resulting in such classes not
being considered as a class in `Esm2015ReflectionHost`.

As a consequence, the analysis of functions/methods that return a
`ModuleWithProviders` object did not take the methods of such classes into
account.

Another edge-case with such intermediate variable was that static
properties would not be considered as class members. A testcase was added
to prevent regressions.

Fixes #29078

PR Close #29119
2019-04-02 10:50:46 -07:00
Pete Bacon Darwin
63013f1aeb fix(ivy): support finding the import of namespace-imported identifiers (#27675)
Currently there is no support in ngtsc for imports of the form:

```
import * as core from `@angular/core`

export function forRoot(): core.ModuleWithProviders;
```

This commit modifies the `ReflectionHost.getImportOfIdentifier(id)`
method, so that it supports this kind of return type.

PR Close #27675
2019-04-01 16:06:14 -07:00
George Kalpakas
2790352d04 refactor(ivy): use ClassDeclaration in more ReflectionHost methods (#29209)
PR Close #29209
2019-03-21 22:20:23 +00:00
George Kalpakas
bb6a3632f6 refactor(ivy): correctly type class declarations in ngtsc/ngcc (#29209)
Previously, several `ngtsc` and `ngcc` APIs dealing with class
declaration nodes used inconsistent types. For example, some methods of
the `DecoratorHandler` interface expected a `ts.Declaration` argument,
but actual `DecoratorHandler` implementations specified a stricter
`ts.ClassDeclaration` type.

As a result, the stricter methods would operate under the incorrect
assumption that their arguments were of type `ts.ClassDeclaration`,
while the actual arguments might be of different types (e.g. `ngcc`
would call them with `ts.FunctionDeclaration` or
`ts.VariableDeclaration` arguments, when compiling ES5 code).

Additionally, since we need those class declarations to be referenced in
other parts of the program, `ngtsc`/`ngcc` had to either repeatedly
check for `ts.isIdentifier(node.name)` or assume there was a `name`
identifier and use `node.name!`. While this assumption happens to be
true in the current implementation, working around type-checking is
error-prone (e.g. the assumption might stop being true in the future).

This commit fixes this by introducing a new type to be used for such
class declarations (`ts.Declaration & {name: ts.Identifier}`) and using
it consistently throughput the code.

PR Close #29209
2019-03-21 22:20:23 +00:00
Alex Rickabaugh
ccb70e1c64 fix(ivy): reuse default imports in type-to-value references (#29266)
This fixes an issue with commit b6f6b117. In this commit, default imports
processed in a type-to-value conversion were recorded as non-local imports
with a '*' name, and the ImportManager generated a new default import for
them. When transpiled to ES2015 modules, this resulted in the following
correct code:

import i3 from './module';

// somewhere in the file, a value reference of i3:
{type: i3}

However, when the AST with this synthetic import and reference was
transpiled to non-ES2015 modules (for example, to commonjs) an issue
appeared:

var module_1 = require('./module');
{type: i3}

TypeScript renames the imported identifier from i3 to module_1, but doesn't
substitute later references to i3. This is because the import and reference
are both synthetic, and never went through the TypeScript AST step of
"binding" which associates the reference to its import. This association is
important during emit when the identifiers might change.

Synthetic (transformer-added) imports will never be bound properly. The only
possible solution is to reuse the user's original import and the identifier
from it, which will be properly downleveled. The issue with this approach
(which prompted the fix in b6f6b117) is that if the import is only used in a
type position, TypeScript will mark it for deletion in the generated JS,
even though additional non-type usages are added in the transformer. This
again would leave a dangling import.

To work around this, it's necessary for the compiler to keep track of
identifiers that it emits which came from default imports, and tell TS not
to remove those imports during transpilation. A `DefaultImportTracker` class
is implemented to perform this tracking. It implements a
`DefaultImportRecorder` interface, which is used to record two significant
pieces of information:

* when a WrappedNodeExpr is generated which refers to a default imported
  value, the ts.Identifier is associated to the ts.ImportDeclaration via
  the recorder.
* when that WrappedNodeExpr is later emitted as part of the statement /
  expression translators, the fact that the ts.Identifier was used is
  also recorded.

Combined, this tracking gives the `DefaultImportTracker` enough information
to implement another TS transformer, which can recognize default imports
which were used in the output of the Ivy transform and can prevent them
from being elided. This is done by creating a new ts.ImportDeclaration for
the imports with the same ts.ImportClause. A test verifies that this works.

PR Close #29266
2019-03-12 18:02:08 -07:00
Alex Rickabaugh
b6f6b1178f fix(ivy): generate type references to a default import (#29146)
This commit refactors and expands ngtsc's support for generating imports of
values from imports of types (this is used for example when importing a
class referenced in a type annotation in a constructor).

Previously, this logic handled "import {Foo} from" and "import * as foo
from" style imports, but failed on imports of default values ("import
Foo from"). This commit moves the type-to-value logic to a separate file and
expands it to cover the default import case. Doing this also required
augmenting the ImportManager to track default as well as non-default import
generation. The APIs were made a little cleaner at the same time.

PR Close #29146
2019-03-08 11:57:08 -08:00
Alex Rickabaugh
881807dc36 fix(ivy): never use imported type references as values (#29111)
ngtsc occasionally converts a type reference (such as the type of a
parameter in a constructor) to a value reference (argument to a
directiveInject call). TypeScript has a bad habit of sometimes removing
the import statement associated with this type reference, because it's a
type only import when it initially looks at the file.

A solution to this is to always add an import to refer to a type position
value that's imported, and not rely on the existing import.

PR Close #29111
2019-03-05 16:47:41 -08:00
Greg Magolan
ea09430039 build: rules_nodejs 0.26.0 & use @npm instead of @ngdeps now that downstream angular build uses angular bundles (#28871)
PR Close #28871
2019-02-28 12:06:36 -08:00
Andrew Kushnir
772b24ccc3 fix(ivy): avoid missing imports for types that can be represented as values (#28941)
Prior to this change, TypeScript stripped out some imports in case we reference a type that can be represented as a value (for ex. classes). This fix ensures that we use correct symbol identifier, which makes TypeScript retain the necessary import statements.

PR Close #28941
2019-02-27 15:13:40 -08:00
Alex Rickabaugh
d127d05dc3 fix(ivy): correctly resolve shorthand property declarations (#28936)
The partial evaluator in ngtsc can handle a shorthand property declaration
in the middle evaluation, but fails if evaluation starts at the shorthand
property itself. This is because evaluation starts at the ts.Identifier
of the property (the ts.Expression representing it), not the ts.Declaration
for the property.

The fix for this is to detect in TypeScriptReflectionHost when a ts.Symbol
refers to a shorthand property, and to use the ts.TypeChecker method
getShorthandAssignmentValueSymbol() to resolve the value of the assignment
instead.

FW-1089 #resolve

PR Close #28936
2019-02-27 08:48:54 -08:00
Wassim Chegham
ce68b4d839 style: enforce buildifier lint on CI (#28186)
PR Close #28186
2019-02-26 16:57:41 -08:00
Alex Eagle
38343a2388 build: set a default module_name for ts_library rules (#28051)
PR Close #28051
2019-01-18 10:16:39 -08:00
JoostK
d68ad3e617 fix(ivy): ngcc - recognize synthesized constructors (#27897)
A constructor function may have been "synthesized" by TypeScript during
JavaScript emit, in the case no user-defined constructor exists and e.g.
property initializers are used. Those initializers need to be emitted
into a constructor in JavaScript, so the TypeScript compiler generates a
synthetic constructor.

This commit adds identification of such constructors as ngcc needs to be
able to tell if a class did originally have a constructor in the
TypeScript source. When a class has a superclass, a synthesized
constructor must not be considered as a user-defined constructor as that
prevents a base factory call from being created by ngtsc, resulting in a
factory function that does not inject the dependencies of the superclass.
Hence, we identify a default synthesized super call in the constructor
body, according to the structure that TypeScript emits.

PR Close #27897
2019-01-09 11:48:10 -08:00
Alex Rickabaugh
2a6108af97 refactor(ivy): split apart the 'metadata' package in the ngtsc compiler (#27743)
This refactoring moves code around between a few of the ngtsc subpackages,
with the goal of having a more logical package structure. Additional
interfaces are also introduced where they make sense.

The 'metadata' package formerly contained both the partial evaluator,
the TypeScriptReflectionHost as well as some other reflection functions,
and the Reference interface and various implementations. This package
was split into 3 parts.

The partial evaluator now has its own package 'partial_evaluator', and
exists behind an interface PartialEvaluator instead of a top-level
function. In the future this will be useful for reducing churn as the
partial evaluator becomes more complicated.

The TypeScriptReflectionHost and other miscellaneous functions have moved
into a new 'reflection' package. The former 'host' package which contained
the ReflectionHost interface and associated types was also merged into this
new 'reflection' package.

Finally, the Reference APIs were moved to the 'imports' package, which will
consolidate all import-related logic in ngtsc.

PR Close #27743
2019-01-08 16:36:18 -08:00