This is the final patch to migrate the Angular styling code to have a
smaller instruction set in preparation for the runtime refactor. All
styling-related instructions now work both in template and hostBindings
functions and do not use `element` as a prefix for their names:
BEFORE:
elementStyling()
elementStyleProp()
elementClassProp()
elementStyleMap()
elementClassMap()
elementStylingApply()
AFTER:
styling()
styleProp()
classProp()
styleMap()
classMap()
stylingApply()
PR Close#30318
This patch removes all host-specific styling instructions in favor of
using element-level instructions instead. Because of the previous
patches that made sure `select(n)` worked between styling calls, all
host level instructions are not needed anymore. This patch changes each
of those instruction calls to use any of the `elementStyling*`,
`elementStyle*` and `elementClass*` styling instructions instead.
PR Close#30336
This patch breaks up the existing `elementStylingMap` into
`elementClassMap` and `elementStyleMap` instructions. It also breaks
apart `hostStlyingMap` into `hostClassMap` and `hostStyleMap`
instructions. This change allows for better tree-shaking and reduces
the complexity of the styling algorithm code for `[style]` and `[class]`
bindings.
PR Close#30293
This commit adds registration of AOT compiled NgModules that have 'id'
properties set in their metadata. Such modules have a call to
registerNgModuleType() emitted as part of compilation.
The JIT behavior of this code is already in place.
This is required for module loading systems (such as g3) which rely on
getModuleFactory().
PR Close#29980
The `Δ` caused issue with other infrastructure, and we are temporarily
changing it to `ɵɵ`.
This commit also patches ts_api_guardian_test and AIO to understand `ɵɵ`.
PR Close#29850
So far using runtime i18n with ivy meant that you needed to use Closure and `goog.getMsg` (or a polyfill). This PR changes the compiler to output both closure & non-closure code, while the unused option will be tree-shaken by minifiers.
This means that if you use the Angular CLI with ivy and load a translations file, you can use i18n and the application will not throw at runtime.
For now it will not translate your application, but at least you can try ivy without having to remove all of your i18n code and configuration.
PR Close#28689
Prior to this change, all module metadata would be included in the
`defineNgModule` call that is set as the `ngModuleDef` field of module
types. Part of the metadata is scope information like declarations,
imports and exports that is used for computing the transitive module
scope in JIT environments, preventing those references from being
tree-shaken for production builds.
This change moves the metadata for scope computations to a pure function
call that patches the scope references onto the module type. Because the
function is marked pure, it may be tree-shaken out during production builds
such that references to declarations and exports are dropped, which in turn
allows for tree-shaken any declaration that is not otherwise referenced.
Fixes#28077, FW-1035
PR Close#29598
This patch is the first of a few patches which separates the
styling logic between template bindings (e.g. <div [style])
from host bindings (e.g. @HostBinding('style')). This patch
in particular introduces a series of host-specific styling
instructions and changes the existing set of template styling
instructions not to accept directives. The underyling code (which
communicates with the styling algorithm) still works as it did
before.
This PR also separates the styling instruction code into a separate
file and moves over all other instructions into an dedicated
instructions directory.
PR Close#29292
This commit adds support for the `static: true` flag in `ContentChild`
queries. Prior to this commit, all `ContentChild` queries were resolved
after change detection ran. This is a problem for backwards
compatibility because View Engine also supported "static" queries which
would resolve before change detection.
Now if users add a `static: true` option, the query will be resolved in
creation mode (before change detection runs). For example:
```ts
@ContentChild(TemplateRef, {static: true}) template !: TemplateRef;
```
This feature will come in handy for components that need
to create components dynamically.
PR Close#28811
This commit adds support for the `static: true` flag in
`ViewChild` queries. Prior to this commit, all `ViewChild`
queries were resolved after change detection ran. This is
a problem for backwards compatibility because View Engine
also supported "static" queries which would resolve before
change detection.
Now if users add a `static: true` option, the query will be
resolved in creation mode (before change detection runs).
For example:
```ts
@ViewChild(TemplateRef, {static: true}) template !: TemplateRef;
```
This feature will come in handy for components that need
to create components dynamically.
PR Close#28811
Prior to this change contentQueriesRefresh functions that represent refresh logic for @ContentQuery list were not composable, which caused problems in case one Directive inherits another one and both of them contain Content Queries. Due to the fact that we used indices to reference queries in refresh function, results were placed into wrong Queries. In order to avoid that we no longer use indices to reference queries and instead maintain current content query index while iterating through them. This allows us to compose contentQueriesRefresh functions and make inheritance feature work with Content Queries.
PR Close#28324
By its nature, Ivy alters the import graph of a TS program, adding imports
where template dependencies exist. For example, if ComponentA uses PipeB
in its template, Ivy will insert an import of PipeB into the file in which
ComponentA is declared.
Any insertion of an import into a program has the potential to introduce a
cycle into the import graph. If for some reason the file in which PipeB is
declared imports the file in which ComponentA is declared (maybe it makes
use of a service or utility function that happens to be in the same file as
ComponentA) then this could create an import cycle. This turns out to
happen quite regularly in larger Angular codebases.
TypeScript and the Ivy runtime have no issues with such cycles. However,
other tools are not so accepting. In particular the Closure Compiler is
very anti-cycle.
To mitigate this problem, it's necessary to detect when the insertion of
an import would create a cycle. ngtsc can then use a different strategy,
known as "remote scoping", instead of directly writing a reference from
one component to another. Under remote scoping, a function
'setComponentScope' is called after the declaration of the component's
module, which does not require the addition of new imports.
FW-647 #resolve
PR Close#28169
Prior to this change `viewQuery` functions that represent @ViewQuery list were not composable, which caused problems in case one Component/Directive inherits another one and both of them contain View Queries. Due to the fact that we used indices to reference queries, resulting query set was corrupted (child component queries were overridden by super class ones). In order to avoid that we no longer use indices assigned at compile time and instead maintain current view query index while iterating through them. This allows us to compose `viewQuery` functions and make inheritance feature work with View Queries.
PR Close#28309
Due to the fact that animations in Angular are defined in the component metadata,
all animation trigger definitions are localized to the component and are
inaccessible outside of it. Animation host listeners in Ivy are
rendered in the context of the parent component, but the VE renders them
differently. This patch ensures that animation host listeners are
always registered in the sub component's renderer
Jira issue: FW-943
Jira issue: FW-958
PR Close#28210
This commit adds sanitization for `elementProperty` and `elementAttribute` instructions used in `hostBindings` function, similar to what we already have in the `template` function. Main difference is the fact that for some attributes (like "href" and "src") we can't define which SecurityContext they belong to (URL vs RESOURCE_URL) in Compiler, since information in Directive selector may not be enough to calculate it. In order to resolve the problem, Compiler injects slightly different sanitization function which detects proper Security Context at runtime.
PR Close#27939
This update introduces support for global object (window, document, body) listeners, that can be defined via host listeners on Components and Directives.
PR Close#27772
Previously in Ivy, metadata for directives/components/modules/etc was
carried in .d.ts files inside type information encoded on the
DirectiveDef, ComponentDef, NgModuleDef, etc types of Ivy definition
fields. This works well, but has the side effect of complicating Ivy's
runtime code as these extra generic type parameters had to be specified
as <any> throughout the codebase. *DefInternal types were introduced
previously to mitigate this issue, but that's the wrong way to solve
the problem.
This commit returns *Def types to their original form, with no metadata
attached. Instead, new *DefWithMeta types are introduced that alias the
plain definition types and add extra generic parameters. This way the
only code that needs to deal with the extra metadata parameters is the
compiler code that reads and writes them - the existence of this metadata
is transparent to the runtime, as it should be.
PR Close#26203
This commit creates an API for factory functions which allows them
to be inherited from one another. To do so, it differentiates between
the factory function as a wrapper for a constructor and the factory
function in ngInjectableDefs which is determined by a default
provider.
The new form is:
factory: (t?) => new (t || SomeType)(inject(Dep1), inject(Dep2))
The 't' parameter allows for constructor inheritance. A subclass with
no declared constructor inherits its constructor from the superclass.
With the 't' parameter, a subclass can call the superclass' factory
function and use it to create an instance of the subclass.
For @Injectables with configured providers, the factory function is
of the form:
factory: (t?) => t ? constructorInject(t) : provider();
where constructorInject(t) creates an instance of 't' using the
naturally declared constructor of the type, and where provider()
creates an instance of the base type using the special declared
provider on @Injectable.
PR Close#25392