12 Commits

Author SHA1 Message Date
Pete Bacon Darwin
39d4016fe9 refactor(ngcc): abstract onTaskCompleted out of executors (#36083)
Moving the definition of the `onTaskCompleted` callback into `mainNgcc()`
allows it to be configured based on options passed in there more easily.
This will be the case when we want to configure whether to log or throw
an error for tasks that failed to be processed successfully.

This commit also creates two new folders and moves the code around a bit
to make it easier to navigate the code§:

* `execution/tasks`: specific helpers such as task completion handlers
* `execution/tasks/queues`: the `TaskQueue` implementations and helpers

PR Close #36083
2020-03-18 15:56:21 -07:00
Pete Bacon Darwin
712f2642d5 refactor(ngcc): add message text to task outcomes (#36083)
This sets up the task execution to be able to report failed compiles

PR Close #36083
2020-03-18 15:56:21 -07:00
Alan Agius
d7efc45c04 perf(ngcc): only create tasks for non-processed formats (#35719)
Change the behaviour in `analyzeEntryPoints` to only create tasks for non-processed formats.

PR Close #35719
2020-03-02 08:17:02 -08:00
George Kalpakas
e36e6c85ef perf(ngcc): process tasks in parallel in async mode (#32427)
`ngcc` supports both synchronous and asynchronous execution. The default
mode when using `ngcc` programmatically (which is how `@angular/cli` is
using it) is synchronous. When running `ngcc` from the command line
(i.e. via the `ivy-ngcc` script), it runs in async mode.

Previously, the work would be executed in the same way in both modes.

This commit improves the performance of `ngcc` in async mode by
processing tasks in parallel on multiple processes. It uses the Node.js
built-in [`cluster` module](https://nodejs.org/api/cluster.html) to
launch a cluster of Node.js processes and take advantage of multi-core
systems.

Preliminary comparisons indicate a 1.8x to 2.6x speed improvement when
processing the angular.io app (apparently depending on the OS, number of
available cores, system load, etc.). Further investigation is needed to
better understand these numbers and identify potential areas of
improvement.

Inspired by/Based on @alxhub's prototype: alxhub/angular@cb631bdb1
Original design doc: https://hackmd.io/uYG9CJrFQZ-6FtKqpnYJAA?view

Jira issue: [FW-1460](https://angular-team.atlassian.net/browse/FW-1460)

PR Close #32427
2019-09-09 15:55:13 -04:00
George Kalpakas
2844dd2972 refactor(ngcc): abstract task selection behind an interface (#32427)
This change does not alter the current behavior, but makes it easier to
introduce `TaskQueue`s implementing different task selection algorithms,
for example to support executing multiple tasks in parallel (while
respecting interdependencies between them).

Inspired by/Based on @alxhub's prototype: alxhub/angular@cb631bdb1

PR Close #32427
2019-09-09 15:55:13 -04:00
George Kalpakas
0cf94e3ed5 refactor(ngcc): remove unused EntryPointProcessingMetadata data and types (#32427)
Previously, `ngcc` needed to store some metadata related to the
processing of each entry-point. This metadata was stored in a `Map`, in
the form of `EntryPointProcessingMetadata` and passed around as needed.

After some recent refactorings, it turns out that this metadata (with
its only remaining property, `hasProcessedTypings`) was no longer used,
because the relevant information was extracted from other sources (such
as the `processDts` property on `Task`s).

This commit cleans up the code by removing the unused code and types.

PR Close #32427
2019-09-09 15:55:13 -04:00
George Kalpakas
9270d3f279 refactor(ngcc): take advantage of early knowledge about format property processability (#32427)
In the past, a task's processability didn't use to be known in advance.
It was possible that a task would be created and added to the queue
during the analysis phase and then later (during the compilation phase)
it would be found out that the task (i.e. the associated format
property) was not processable.

As a result, certain checks had to be delayed, until a task's processing
had started or even until all tasks had been processed. Examples of
checks that had to be delayed are:
- Whether a task can be skipped due to `compileAllFormats: false`.
- Whether there were entry-points for which no format at all was
  successfully processed.

It turns out that (as made clear by the refactoring in 9537b2ff8), once
a task starts being processed it is expected to either complete
successfully (with the associated format being processed) or throw an
error (in which case the process will exit). In other words, a task's
processability is known in advance.

This commit takes advantage of this fact by moving certain checks
earlier in the process (e.g. in the analysis phase instead of the
compilation phase), which in turn allows avoiding some unnecessary work.
More specifically:

- When `compileAllFormats` is `false`, tasks are created _only_ for the
  first suitable format property for each entry-point, since the rest of
  the tasks would have been skipped during the compilation phase anyway.
  This has the following advantages:
  1. It avoids the slight overhead of generating extraneous tasks and
     then starting to process them (before realizing they should be
     skipped).
  2. In a potential future parallel execution mode, unnecessary tasks
     might start being processed at the same time as the first (useful)
     task, even if their output would be later discarded, wasting
     resources. Alternatively, extra logic would have to be added to
     prevent this from happening. The change in this commit avoids these
     issues.
- When an entry-point is not processable, an error will be thrown
  upfront without having to wait for other tasks to be processed before
  failing.

PR Close #32427
2019-09-09 15:55:13 -04:00
George Kalpakas
3127ba3c35 refactor(ngcc): add support for asynchronous execution (#32427)
Previously, `ngcc`'s programmatic API would run and complete
synchronously. This was necessary for specific usecases (such as how the
`@angular/cli` invokes `ngcc` as part of the TypeScript module
resolution process), but not for others (e.g. running `ivy-ngcc` as a
`postinstall` script).

This commit adds a new option (`async`) that enables turning on
asynchronous execution. I.e. it signals that the caller is OK with the
function call to complete asynchronously, which allows `ngcc` to
potentially run in a more efficient mode.

Currently, there is no difference in the way tasks are executed in sync
vs async mode, but this change sets the ground for adding new execution
options (that require asynchronous operation), such as processing tasks
in parallel on multiple processes.

NOTE:
When using the programmatic API, the default value for `async` is
`false`, thus retaining backwards compatibility.
When running `ngcc` from the command line (i.e. via the `ivy-ngcc`
script), it runs in async mode (to be able to take advantage of future
optimizations), but that is transparent to the caller.

PR Close #32427
2019-09-09 15:55:13 -04:00
George Kalpakas
5c213e5474 refactor(ngcc): abstract work orchestration/execution behind an interface (#32427)
This change does not alter the current behavior, but makes it easier to
introduce new types of `Executors` , for example to do the required work
in parallel (on multiple processes).

Inspired by/Based on @alxhub's prototype: alxhub/angular@cb631bdb1

PR Close #32427
2019-09-09 15:55:13 -04:00
George Kalpakas
bd1de32b33 refactor(ngcc): minor code clean-up following #32052 (#32427)
This commit addresses the review feedback from #32052, which was merged
before addressing the feedback there.

PR Close #32427
2019-09-09 15:55:13 -04:00
George Kalpakas
29d3b68554 fix(ivy): ngcc - correctly update package.json when createNewEntryPointFormats is true (#32052)
Previously, when run with `createNewEntryPointFormats: true`, `ngcc`
would only update `package.json` with the new entry-point for the first
format property that mapped to a format-path. Subsequent properties
mapping to the same format-path would be detected as processed and not
have their new entry-point format recorded in `package.json`.

This commit fixes this by ensuring `package.json` is updated for all
matching format properties, when writing an `EntryPointBundle`.

PR Close #32052
2019-08-08 11:14:38 -07:00
George Kalpakas
ef12e10e59 refactor(ivy): ngcc - split work into distinct analyze/compile/execute phases (#32052)
This refactoring more clearly separates the different phases of the work
performed by `ngcc`, setting the ground for being able to run each phase
independently in the future and improve performance via parallelization.

Inspired by/Based on @alxhub's prototype: alxhub/angular@cb631bdb1

PR Close #32052
2019-08-08 11:14:38 -07:00