233 Commits

Author SHA1 Message Date
Alex Rickabaugh
16c7441c2f refactor(compiler-cli): introduce the TemplateTypeChecker abstraction (#38105)
This commit significantly refactors the 'typecheck' package to introduce a
new abstraction, the `TemplateTypeChecker`. To achieve this:

* a 'typecheck:api' package is introduced, containing common interfaces that
  consumers of the template type-checking infrastructure can depend on
  without incurring a dependency on the template type-checking machinery as
  a whole.
* interfaces for `TemplateTypeChecker` and `TypeCheckContext` are introduced
  which contain the abstract operations supported by the implementation
  classes `TemplateTypeCheckerImpl` and `TypeCheckContextImpl` respectively.
* the `TemplateTypeChecker` interface supports diagnostics on a whole
  program basis to start with, but the implementation is purposefully
  designed to support incremental diagnostics at a per-file or per-component
  level.
* `TemplateTypeChecker` supports direct access to the type check block of a
  component.
* the testing utility is refactored to be a lot more useful, and new tests
  are added for the new abstraction.

PR Close #38105
2020-07-29 10:31:20 -07:00
Alex Rickabaugh
2cbc429291 test(compiler-cli): disable DynamicValue diagnostic tests on Windows (#37763)
This commit disables all diagnostic tests for DynamicValue diagnostics which
make assertions about the diagnostic filename while running tests on Windows.

Such assertions are currently suffering from a case sensitivity issue.

PR Close #37763
2020-06-25 17:04:57 -07:00
JoostK
712f1bd0b7 feat(compiler-cli): explain why an expression cannot be used in AOT compilations (#37587)
During AOT compilation, the value of some expressions need to be known at
compile time. The compiler has the ability to statically evaluate expressions
the best it can, but there can be occurrences when an expression cannot be
evaluated statically. For instance, the evaluation could depend on a dynamic
value or syntax is used that the compiler does not understand. Alternatively,
it is possible that an expression could be statically evaluated but the
resulting value would be of an incorrect type.

In these situations, it would be helpful if the compiler could explain why it
is unable to evaluate an expression. To this extend, the static interpreter
in Ivy keeps track of a trail of `DynamicValue`s which follow the path of nodes
that were considered all the way to the node that causes an expression to be
considered dynamic. Up until this commit, this rich trail of information was
not surfaced to a developer so the compiler was of little help to explain
why static evaluation failed, resulting in situations that are hard to debug
and resolve.

This commit adds much more insight to the diagnostic that is produced for static
evaluation errors. For dynamic values, the trail of `DynamicValue` instances
is presented to the user in a meaningful way. If a value is available but not
of the correct type, the type of the resolved value is shown.

Resolves FW-2155

PR Close #37587
2020-06-25 14:16:35 -07:00
JoostK
d2fb552116 refactor(compiler-cli): create diagnostics using ts.DiagnosticRelatedInformation (#37587)
Previously, an anonymous type was used for creating a diagnostic with related
information. The anonymous type would then be translated into the necessary
`ts.DiagnosticRelatedInformation` shape within `makeDiagnostic`. This commit
switches the `makeDiagnostic` signature over to taking `ts.DiagnosticRelatedInformation`
directly and introduces `makeRelatedInformation` to easily create such objects.
This is done to aid in making upcoming work more readable.

PR Close #37587
2020-06-25 14:16:35 -07:00
Alex Rickabaugh
e648a0c4ca refactor(compiler-cli): extract NgCompilerAdapter interface (#37118)
`NgCompiler` is the heart of ngtsc and can be used to analyze and compile
Angular programs in a variety of environments. Most of these integrations
rely on `NgProgram` and the creation of an `NgCompilerHost` in order to
create a `ts.Program` with the right shape for `NgCompiler`.

However, certain environments (such as the Angular Language Service) have
their own mechanisms for creating `ts.Program`s that don't make use of a
`ts.CompilerHost`. In such environments, an `NgCompilerHost` does not make
sense.

This commit breaks the dependency of `NgCompiler` on `NgCompilerHost` and
extracts the specific interface of the host on which `NgCompiler` depends
into a new interface, `NgCompilerAdapter`. This interface includes methods
from `ts.CompilerHost`, the `ExtendedTsCompilerHost`, as well as APIs from
`NgCompilerHost`.

A consumer such as the language service can implement this API without
needing to jump through hoops to create an `NgCompilerHost` implementation
that somehow wraps its specific environment.

PR Close #37118
2020-06-03 13:29:44 -07:00
Joey Perrott
d1ea1f4c7f build: update license headers to reference Google LLC (#37205)
Update the license headers throughout the repository to reference Google LLC
rather than Google Inc, for the required license headers.

PR Close #37205
2020-05-26 14:26:58 -04:00
Paul Gschwendtner
4c92cf43cf feat(compiler-cli): report error if undecorated class with Angular features is discovered (#36921)
Previously in v9, we deprecated the pattern of undecorated base classes
that rely on Angular features. We ran a migration for this in version 9
and will run the same on in version 10 again.

To ensure that projects do not regress and start using the unsupported
pattern again, we report an error in ngtsc if such undecorated classes
are discovered.

We keep the compatibility code enabled in ngcc so that libraries
can be still be consumed, even if they have not been migrated yet.

Resolves FW-2130.

PR Close #36921
2020-05-06 15:06:10 -07:00
Pete Bacon Darwin
70dd27ffd8 fix(compiler): normalize line endings in ICU expansions (#36741)
The html parser already normalizes line endings (converting `\r\n` to `\n`)
for most text in templates but it was missing the expressions of ICU expansions.

In ViewEngine backticked literal strings, used to define inline templates,
were already normalized by the TypeScript parser.
In Ivy we are parsing the raw text of the source file directly so the line
endings need to be manually normalized.

This change ensures that inline templates have the line endings of ICU
expression normalized correctly, which matches the ViewEngine.

In ViewEngine external templates, defined in HTML files, the behavior was
different, since TypeScript was not normalizing the line endings.
Specifically, ICU expansion "expressions" are not being normalized.
This is a problem because it means that i18n message ids can be different on
different machines that are setup with different line ending handling,
or if the developer moves a template from inline to external or vice versa.

The goal is always to normalize line endings, whether inline or external.
But this would be a breaking change since it would change i18n message ids
that have been previously computed. Therefore this commit aligns the ivy
template parsing to have the same "buggy" behavior for external templates.

There is now a compiler option `i18nNormalizeLineEndingsInICUs`, which
if set to `true` will ensure the correct non-buggy behavior. For the time
being this option defaults to `false` to ensure backward compatibility while
allowing opt-in to the desired behavior. This option's default will be
flipped in a future breaking change release.

Further, when this option is set to `false`, any ICU expression tokens,
which have not been normalized, are added to the `ParseResult` from the
`HtmlParser.parse()` method. In the future, this collection of tokens could
be used to diagnose and encourage developers to migrate their i18n message
ids. See FW-2106.

Closes #36725

PR Close #36741
2020-04-28 12:22:40 -07:00
JoostK
4aa4e6fd03 fix(compiler): handle type references to namespaced symbols correctly (#36106)
When the compiler needs to convert a type reference to a value
expression, it may encounter a type that refers to a namespaced symbol.
Such namespaces need to be handled specially as there's various forms
available. Consider a namespace named "ns":

1. One can refer to a namespace by itself: `ns`. A namespace is only
   allowed to be used in a type position if it has been merged with a
   class, but even if this is the case it may not be possible to convert
   that type into a value expression depending on the import form. More
   on this later (case a below)
2. One can refer to a type within the namespace: `ns.Foo`. An import
   needs to be generated to `ns`, from which the `Foo` property can then
   be read.
3. One can refer to a type in a nested namespace within `ns`:
   `ns.Foo.Bar` and possibly even deeper nested. The value
   representation is similar to case 2, but includes additional property
   accesses.

The exact strategy of how to deal with these cases depends on the type
of import used. There's two flavors available:

a. A namespaced import like `import * as ns from 'ns';` that creates
   a local namespace that is irrelevant to the import that needs to be
   generated (as said import would be used instead of the original
   import).

   If the local namespace "ns" itself is referred to in a type position,
   it is invalid to convert it into a value expression. Some JavaScript
   libraries publish a value as default export using `export = MyClass;`
   syntax, however it is illegal to refer to that value using "ns".
   Consequently, such usage in a type position *must* be accompanied by
   an `@Inject` decorator to provide an explicit token.

b. An explicit namespace declaration within a module, that can be
   imported using a named import like `import {ns} from 'ns';` where the
   "ns" module declares a namespace using `declare namespace ns {}`.
   In this case, it's the namespace itself that needs to be imported,
   after which any qualified references into the namespace are converted
   into property accesses.

Before this change, support for namespaces in the type-to-value
conversion was limited and only worked  correctly for a single qualified
name using a namespace import (case 2a). All other cases were either
producing incorrect code or would crash the compiler (case 1a).

Crashing the compiler is not desirable as it does not indicate where
the issue is. Moreover, the result of a type-to-value conversion is
irrelevant when an explicit injection token is provided using `@Inject`,
so referring to a namespace in a type position (case 1) could still be
valid.

This commit introduces logic to the type-to-value conversion to be able
to properly deal with all type references to namespaced symbols.

Fixes #36006
Resolves FW-1995

PR Close #36106
2020-04-09 11:32:21 -07:00
Alex Rickabaugh
0a69a2832b style(compiler-cli): reformat of codebase with new clang-format version (#36520)
This commit reformats the packages/compiler-cli tree using the new version
of clang-format.

PR Close #36520
2020-04-08 14:51:08 -07:00
Ayaz Hafiz
e893c5a330 fix(compiler-cli): pass real source spans where they are empty (#31805)
Some consumers of functions that take `ParseSourceSpan`s currently pass
empty and incorrect source spans. This fixes those cases.

PR Close #31805
2020-04-06 09:28:27 -07:00
JoostK
32ce8b1326 feat(compiler): add dependency info and ng-content selectors to metadata (#35695)
This commit augments the `FactoryDef` declaration of Angular decorated
classes to contain information about the parameter decorators used in
the constructor. If no constructor is present, or none of the parameters
have any Angular decorators, then this will be represented using the
`null` type. Otherwise, a tuple type is used where the entry at index `i`
corresponds with parameter `i`. Each tuple entry can be one of two types:

1. If the associated parameter does not have any Angular decorators,
   the tuple entry will be the `null` type.
2. Otherwise, a type literal is used that may declare at least one of
   the following properties:
   - "attribute": if `@Attribute` is present. The injected attribute's
   name is used as string literal type, or the `unknown` type if the
   attribute name is not a string literal.
   - "self": if `@Self` is present, always of type `true`.
   - "skipSelf": if `@SkipSelf` is present, always of type `true`.
   - "host": if `@Host` is present, always of type `true`.
   - "optional": if `@Optional` is present, always of type `true`.

   A property is only present if the corresponding decorator is used.

   Note that the `@Inject` decorator is currently not included, as it's
   non-trivial to properly convert the token's value expression to a
   type that is valid in a declaration file.

Additionally, the `ComponentDefWithMeta` declaration that is created for
Angular components has been extended to include all selectors on
`ng-content` elements within the component's template.

This additional metadata is useful for tooling such as the Angular
Language Service, as it provides the ability to offer suggestions for
directives/components defined in libraries. At the moment, such
tooling extracts the necessary information from the _metadata.json_
manifest file as generated by ngc, however this metadata representation
is being replaced by the information emitted into the declaration files.

Resolves FW-1870

PR Close #35695
2020-03-24 14:21:42 -07:00
JoostK
3e3a1ef30d fix(ivy): support dynamic query tokens in AOT mode (#35307)
For view and content queries, the Ivy compiler attempts to statically
evaluate the predicate token so that string predicates containing
comma-separated reference names can be split into an array of strings
during compilation. When the predicate is a dynamic value that cannot be
statically interpreted at compile time, the compiler would previously
produce an error. This behavior breaks a use-case where an `InjectionToken`
is being used as query predicate, as the usage of the `new` keyword
prevents such predicates from being statically evaluated.

This commit changes the behavior to no longer produce an error for
dynamic values. Instead, the expression is emitted as is into the
generated code, postponing the evaluation to happen at runtime.

Fixes #34267
Resolves FW-1828

PR Close #35307
2020-02-27 16:05:21 -08:00
Andrew Kushnir
646655d09a fix(compiler): use FatalDiagnosticError to generate better error messages (#35244)
Prior to this commit, decorator handling logic in Ngtsc used `Error` to throw errors. This commit replaces most of these instances with `FatalDiagnosticError` class, which provider a better diagnostics error (including location of the problematic code).

PR Close #35244
2020-02-20 11:25:23 -08:00
JoostK
6ddf5508db fix(ivy): support emitting a reference to interface declarations (#34849)
In #34021 the ngtsc compiler gained the ability to emit type parameter
constraints, which would generate imports for any type reference that
is used within the constraint. However, the `AbsoluteModuleStrategy`
reference emitter strategy did not consider interface declarations as a
valid declaration it can generate an import for, throwing an error
instead.

This commit fixes the issue by including interface declarations in the
logic that determines whether something is a declaration.

Fixes #34837

PR Close #34849
2020-02-04 10:40:45 -08:00
JoostK
5cada5cce1 fix(ivy): recompile on template change in ngc watch mode on Windows (#34015)
In #33551, a bug in `ngc --watch` mode was fixed so that a component is
recompiled when its template file is changed. Due to insufficient
normalization of files paths, this fix did not have the desired effect
on Windows.

Fixes #32869

PR Close #34015
2020-02-04 10:40:22 -08:00
Alex Rickabaugh
24b2f1da2b refactor(ivy): introduce the 'core' package and split apart NgtscProgram (#34887)
Previously, NgtscProgram lived in the main @angular/compiler-cli package
alongside the legacy View Engine compiler. As a result, the main package
depended on all of the ngtsc internal packages, and a significant portion of
ngtsc logic lived in NgtscProgram.

This commit refactors NgtscProgram and moves the main logic of compilation
into a new 'core' package. The new package defines a new API which enables
implementers of TypeScript compilers (compilers built using the TS API) to
support Angular transpilation as well. It involves a new NgCompiler type
which takes a ts.Program and performs Angular analysis and transformations,
as well as an NgCompilerHost which wraps an input ts.CompilerHost and adds
any extra Angular files.

Together, these two classes are used to implement a new NgtscProgram which
adapts the legacy api.Program interface used by the View Engine compiler
onto operations on the new types. The new NgtscProgram implementation is
significantly smaller and easier to reason about.

The new NgCompilerHost replaces the previous GeneratedShimsHostWrapper which
lived in the 'shims' package.

A new 'resource' package is added to support the HostResourceLoader which
previously lived in the outer compiler package.

As a result of the refactoring, the dependencies of the outer
@angular/compiler-cli package on ngtsc internal packages are significantly
trimmed.

This refactoring was driven by the desire to build a plugin interface to the
compiler so that tsc_wrapped (another consumer of the TS compiler APIs) can
perform Angular transpilation on user request.

PR Close #34887
2020-01-24 08:59:59 -08:00
JoostK
7659f2e24b fix(ngcc): do not attempt compilation when analysis fails (#34889)
In #34288, ngtsc was refactored to separate the result of the analysis
and resolve phase for more granular incremental rebuilds. In this model,
any errors in one phase transition the trait into an error state, which
prevents it from being ran through subsequent phases. The ngcc compiler
on the other hand did not adopt this strict error model, which would
cause incomplete metadata—due to errors in earlier phases—to be offered
for compilation that could result in a hard crash.

This commit updates ngcc to take advantage of ngtsc's `TraitCompiler`,
that internally manages all Ivy classes that are part of the
compilation. This effectively replaces ngcc's own `AnalyzedFile` and
`AnalyzedClass` types, together with all of the logic to drive the
`DecoratorHandler`s. All of this is now handled in the `TraitCompiler`,
benefiting from its explicit state transitions of `Trait`s so that the
ngcc crash is a thing of the past.

Fixes #34500
Resolves FW-1788

PR Close #34889
2020-01-23 14:47:03 -08:00
Alex Rickabaugh
5b9c96b9b8 refactor(ivy): change ImportMode enum to ImportFlags (#34649)
Previously, `ReferenceEmitter.emit()` took an `ImportMode` enum value, where
one value of the enum allowed forcing new imports to be generated when
emitting a reference to some value or type.

This commit refactors `ImportMode` to be an `ImportFlags` value instead.
Using a bit field of flags will allow future customization of reference
emitting.

PR Close #34649
2020-01-23 10:31:47 -08:00
Greg Magolan
aee67f08d9 test: handle bootstrap templated_args in jasmine_node_test defaults.bzl (#34736)
PR Close #34736
2020-01-15 14:58:07 -05:00
Greg Magolan
dcff76e8b9 refactor: handle breaking changes in rules_nodejs 1.0.0 (#34736)
The major one that affects the angular repo is the removal of the bootstrap attribute in nodejs_binary, nodejs_test and jasmine_node_test in favor of using templated_args --node_options=--require=/path/to/script. The side-effect of this is that the bootstrap script does not get the require.resolve patches with explicitly loading the targets _loader.js file.

PR Close #34736
2020-01-15 14:58:07 -05:00
crisbeto
6d534f10e6 fix(ivy): don't run decorator handlers against declaration files (#34557)
Currently the decorator handlers are run against all `SourceFile`s in the compilation, but we shouldn't be doing it against declaration files. This initially came up as a CI issue in #33264 where it was worked around only for the `DirectiveDecoratorHandler`. These changes move the logic into the `TraitCompiler` and `DecorationAnalyzer` so that it applies to all of the handlers.

PR Close #34557
2020-01-10 15:54:51 -08:00
atscott
538d0446b5 Revert "refactor: handle breaking changes in rules_nodejs 1.0.0 (#34589)" (#34730)
This reverts commit 9bb349e1c8089ee29b82c7234a11ad4256f1d06f.

PR Close #34730
2020-01-10 14:12:15 -08:00
atscott
5e60215470 Revert "test: handle bootstrap templated_args in jasmine_node_test defaults.bzl (#34589)" (#34730)
This reverts commit da4782e67f662d37dccb89f9c642897c1266f4ce.

PR Close #34730
2020-01-10 14:12:15 -08:00
Greg Magolan
da4782e67f test: handle bootstrap templated_args in jasmine_node_test defaults.bzl (#34589)
PR Close #34589
2020-01-10 08:31:59 -08:00
Greg Magolan
9bb349e1c8 refactor: handle breaking changes in rules_nodejs 1.0.0 (#34589)
The major one that affects the angular repo is the removal of the bootstrap attribute in nodejs_binary, nodejs_test and jasmine_node_test in favor of using templated_args --node_options=--require=/path/to/script. The side-effect of this is that the bootstrap script does not get the require.resolve patches with explicitly loading the targets _loader.js file.

PR Close #34589
2020-01-10 08:31:59 -08:00
crisbeto
cf37c003ff feat(ivy): error in ivy when inheriting a ctor from an undecorated base (#34460)
Angular View Engine uses global knowledge to compile the following code:

```typescript
export class Base {
  constructor(private vcr: ViewContainerRef) {}
}

@Directive({...})
export class Dir extends Base {
  // constructor inherited from base
}
```

Here, `Dir` extends `Base` and inherits its constructor. To create a `Dir`
the arguments to this inherited constructor must be obtained via dependency
injection. View Engine is able to generate a correct factory for `Dir` to do
this because via metadata it knows the arguments of `Base`'s constructor,
even if `Base` is declared in a different library.

In Ivy, DI is entirely a runtime concept. Currently `Dir` is compiled with
an ngDirectiveDef field that delegates its factory to `getInheritedFactory`.
This looks for some kind of factory function on `Base`, which comes up
empty. This case looks identical to an inheritance chain with no
constructors, which works today in Ivy.

Both of these cases will now become an error in this commit. If a decorated
class inherits from an undecorated base class, a diagnostic is produced
informing the user of the need to either explicitly declare a constructor or
to decorate the base class.

PR Close #34460
2019-12-18 15:04:49 -08:00
crisbeto
dcc8ff4ce7 feat(ivy): throw compilation error when providing undecorated classes (#34460)
Adds a compilation error if the consumer tries to pass in an undecorated class into the `providers` of an `NgModule`, or the `providers`/`viewProviders` arrays of a `Directive`/`Component`.

PR Close #34460
2019-12-18 15:04:49 -08:00
Alex Rickabaugh
498a2ffba3 fix(ivy): don't produce template diagnostics when scope is invalid (#34460)
Previously, ngtsc would perform scope analysis (which directives/pipes are
available inside a component's template) and template type-checking of that
template as separate steps. If a component's scope was somehow invalid (e.g.
its NgModule imported something which wasn't another NgModule), the
component was treated as not having a scope. This meant that during template
type-checking, errors would be produced for any invalid expressions/usage of
other components that should have been in the scope.

This commit changes ngtsc to skip template type-checking of a component if
its scope is erroneous (as opposed to not present in the first place). Thus,
users aren't overwhelmed with diagnostic errors for the template and are
only informed of the root cause of the problem: an invalid NgModule scope.

Fixes #33849

PR Close #34460
2019-12-18 15:04:49 -08:00
Alex Rickabaugh
047488c5d8 refactor(ivy): move NgModule declaration checks to the 'scope' package (#34460)
Previously each NgModule trait checked its own scope for valid declarations
during 'resolve'. This worked, but caused the LocalModuleScopeRegistry to
declare that NgModule scopes were valid even if they contained invalid
declarations.

This commit moves the generation of diagnostic errors to the
LocalModuleScopeRegistry where it belongs. Now the registry can consider an
NgModule's scope to be invalid if it contains invalid declarations.

PR Close #34460
2019-12-18 15:04:49 -08:00
Pete Bacon Darwin
31be29a9f3 fix(ngcc): use the correct identifiers when updating typings files (#34254)
Previously the identifiers used in the typings files were the same as
those used in the source files.

When the typings files and the source files do not match exactly, e.g.
when one of them is flattened, while the other is a deep tree, it is
possible for identifiers to be renamed.

This commit ensures that the correct identifier is used in typings files
when the typings file does not export the same name as the source file.

Fixes https://github.com/angular/ngcc-validation/pull/608

PR Close #34254
2019-12-18 11:25:01 -08:00
Alex Rickabaugh
763f8d470a fix(ivy): validate the NgModule declarations field (#34404)
This commit adds three previously missing validations to
NgModule.declarations:

1. It checks that declared classes are actually within the current
   compilation.

2. It checks that declared classes are directives, components, or pipes.

3. It checks that classes are declared in at most one NgModule.

PR Close #34404
2019-12-17 11:39:48 -08:00
Alex Rickabaugh
af95dddd7e perf(ivy): eagerly parse the template twice during analysis (#34334)
A quirk of the Angular template parser is that when parsing templates in the
"default" mode, with options specified by the user, the source mapping
information in the template AST may be inaccurate. As a result, the compiler
parses the template twice: once for "emit" and once to produce an AST with
accurate sourcemaps for diagnostic production.

Previously, only the first parse was performed during analysis. The second
parse occurred during the template type-checking phase, just in time to
produce the template type-checking file.

However, with the reuse of analysis results during incremental builds, it
makes more sense to do the diagnostic parse eagerly during analysis so that
the work isn't unnecessarily repeated in subsequent builds. This commit
refactors the `ComponentDecoratorHandler` to do both parses eagerly, which
actually cleans up some complexity around template parsing as well.

PR Close #34334
2019-12-12 14:13:16 -08:00
JoostK
8c2cbdd385 perf(ivy): use module resolution cache (#34332)
During TypeScript module resolution, a lot of filesystem requests are
done. This is quite an expensive operation, so a module resolution cache
can be used to speed up the process significantly.

This commit lets the Ivy compiler perform all module resolution with a
module resolution cache. Note that the module resolution behavior can be
changed with a custom compiler host, in which case that custom host
implementation is responsible for caching. In the case of the Angular
CLI a custom compiler host with proper module resolution caching is
already in place, so the CLI already has this optimization.

PR Close #34332
2019-12-12 14:06:37 -08:00
Alex Rickabaugh
74edde0a94 perf(ivy): reuse prior analysis work during incremental builds (#34288)
Previously, the compiler performed an incremental build by analyzing and
resolving all classes in the program (even unchanged ones) and then using
the dependency graph information to determine which .js files were stale and
needed to be re-emitted. This algorithm produced "correct" rebuilds, but the
cost of re-analyzing the entire program turned out to be higher than
anticipated, especially for component-heavy compilations.

To achieve performant rebuilds, it is necessary to reuse previous analysis
results if possible. Doing this safely requires knowing when prior work is
viable and when it is stale and needs to be re-done.

The new algorithm implemented by this commit is such:

1) Each incremental build starts with knowledge of the last known good
   dependency graph and analysis results from the last successful build,
   plus of course information about the set of files changed.

2) The previous dependency graph's information is used to determine the
   set of source files which have "logically" changed. A source file is
   considered logically changed if it or any of its dependencies have
   physically changed (on disk) since the last successful compilation. Any
   logically unchanged dependencies have their dependency information copied
   over to the new dependency graph.

3) During the `TraitCompiler`'s loop to consider all source files in the
   program, if a source file is logically unchanged then its previous
   analyses are "adopted" (and their 'register' steps are run). If the file
   is logically changed, then it is re-analyzed as usual.

4) Then, incremental build proceeds as before, with the new dependency graph
   being used to determine the set of files which require re-emitting.

This analysis reuse avoids template parsing operations in many circumstances
and significantly reduces the time it takes ngtsc to rebuild a large
application.

Future work will increase performance even more, by tackling a variety of
other opportunities to reuse or avoid work.

PR Close #34288
2019-12-12 13:11:45 -08:00
Alex Rickabaugh
50cdc0ac1b refactor(ivy): move analysis side effects into a register phase (#34288)
Previously 'analyze' in the various `DecoratorHandler`s not only extracts
information from the decorators on the classes being analyzed, but also has
several side effects within the compiler:

* it can register metadata about the types involved in global metadata
  trackers.
* it can register information about which .ngfactory symbols are actually
  needed.

In this commit, these side-effects are moved into a new 'register' phase,
which runs after the 'analyze' step. Currently this is a no-op refactoring
as 'register' is always called directly after 'analyze'. In the future this
opens the door for re-use of prior analysis work (with only 'register' being
called, to apply the above side effects).

Also as part of this refactoring, the reification of NgModule scope
information into the incremental dependency graph is moved to the
`NgtscProgram` instead of the `TraitCompiler` (which now only manages trait
compilation and does not have other side effects).

PR Close #34288
2019-12-12 13:11:45 -08:00
Alex Rickabaugh
252e3e9487 refactor(ivy): formalize the compilation process for matched handlers (#34288)
Prior to this commit, the `IvyCompilation` tracked the state of each matched
`DecoratorHandler` on each class in the `ts.Program`, and how they
progressed through the compilation process. This tracking was originally
simple, but had grown more complicated as the compiler evolved. The state of
each specific "target" of compilation was determined by the nullability of
a number of fields on the object which tracked it.

This commit formalizes the process of compilation of each matched handler
into a new "trait" concept. A trait is some aspect of a class which gets
created when a `DecoratorHandler` matches the class. It represents an Ivy
aspect that needs to go through the compilation process.

Traits begin in a "pending" state and undergo transitions as various steps
of compilation take place. The `IvyCompilation` class is renamed to the
`TraitCompiler`, which manages the state of all of the traits in the active
program.

Making the trait concept explicit will support future work to incrementalize
the expensive analysis process of compilation.

PR Close #34288
2019-12-12 13:11:45 -08:00
Pete Bacon Darwin
e524322c43 refactor(compiler): i18n - render legacy i18n message ids (#34135)
Now that `@angular/localize` can interpret multiple legacy message ids in the
metablock of a `$localize` tagged template string, this commit adds those
ids to each i18n message extracted from component templates, but only if
the `enableI18nLegacyMessageIdFormat` is not `false`.

PR Close #34135
2019-12-03 10:15:53 -08:00
Pete Bacon Darwin
2fb9b7ff1b fix(ngcc): do not output duplicate ɵprov properties (#34085)
Previously, the Angular AOT compiler would always add a
`ɵprov` to injectables. But in ngcc this resulted in duplicate `ɵprov`
properties since published libraries already have this property.

Now in ngtsc, trying to add a duplicate `ɵprov` property is an error,
while in ngcc the additional property is silently not added.

// FW-1750

PR Close #34085
2019-11-27 12:46:37 -08:00
Andrew Kushnir
fc2f6b8456 fix(ivy): wrap functions from "providers" in parentheses in Closure mode (#33609)
Due to the fact that Tsickle runs between analyze and transform phases in Angular, Tsickle may transform nodes (add comments with type annotations for Closure) that we captured during the analyze phase. As a result, some patterns where a function is returned from another function may trigger automatic semicolon insertion, which breaks the code (makes functions return `undefined` instead of a function). In order to avoid the problem, this commit updates the code to wrap all functions in some expression ("privders" and "viewProviders") in parentheses. More info can be found in Tsickle source code here: d797426257/src/jsdoc_transformer.ts (L1021)

PR Close #33609
2019-11-20 14:58:35 -08:00
Alex Rickabaugh
08a4f10ee7 fix(ivy): move setClassMetadata calls into a pure iife (#33337)
This commit transforms the setClassMetadata calls generated by ngtsc from:

```typescript
/*@__PURE__*/ setClassMetadata(...);
```

to:

```typescript
/*@__PURE__*/ (function() {
  setClassMetadata(...);
})();
```

Without the IIFE, terser won't remove these function calls because the
function calls have arguments that themselves are function calls or other
impure expressions. In order to make the whole block be DCE-ed by terser,
we wrap it into IIFE and mark the IIFE as pure.

It should be noted that this change doesn't have any impact on CLI* with
build-optimizer, which removes the whole setClassMetadata block within
the webpack loader, so terser or webpack itself don't get to see it at
all. This is done to prevent cross-chunk retention issues caused by
webpack's internal module registry.

* actually we do expect a short-term size regression while
https://github.com/angular/angular-cli/pull/16228
is merged and released in the next rc of the CLI. But long term this
change does nothing to CLI + build-optimizer configuration and is done
primarly to correct the seemingly correct but non-function PURE annotation
that builds not using build-optimizer could rely on.

PR Close #33337
2019-11-20 12:55:58 -08:00
George Kalpakas
033aba9351 fix(ngcc): do not emit ES2015 code in ES5 files (#33514)
Previously, ngcc's `Renderer` would add some constants in the processed
files which were emitted as ES2015 code (e.g. `const` declarations).
This would result in invalid ES5 generated code that would break when
run on browsers that do not support the emitted format.

This commit fixes it by adding a `printStatement()` method to
`RenderingFormatter`, which can convert statements to JavaScript code in
a suitable format for the corresponding `RenderingFormatter`.
Additionally, the `translateExpression()` and `translateStatement()`
ngtsc helper methods are augmented to accept an extra hint to know
whether the code needs to be translated to ES5 format or not.

Fixes #32665

PR Close #33514
2019-11-13 13:49:31 -08:00
George Kalpakas
704775168d fix(ngcc): generate correct metadata for classes with getter/setter properties (#33514)
While processing class metadata, ngtsc generates a `setClassMetadata()`
call which (among other things) contains info about property decorators.
Previously, processing getter/setter pairs with some of ngcc's
`ReflectionHost`s resulted in multiple metadata entries for the same
property, which resulted in duplicate object keys, which in turn causes
an error in ES5 strict mode.

This commit fixes it by ensuring that there are no duplicate property
names in the `setClassMetadata()` calls.

In addition, `generateSetClassMetadataCall()` is updated to treat
`ClassMember#decorators: []` the same as `ClassMember.decorators: null`
(i.e. omitting the `ClassMember` from the generated `setClassMetadata()`
call). Alternatively, ngcc's `ReflectionHost`s could be updated to do
this transformation (`decorators: []` --> `decorators: null`) when
reflecting on class members, but this would require changes in many
places and be less future-proof.

For example, given a class such as:

```ts
class Foo {
  @Input() get bar() { return 'bar'; }
  set bar(value: any) {}
}
```

...previously the generated `setClassMetadata()` call would look like:

```ts
ɵsetClassMetadata(..., {
  bar: [{type: Input}],
  bar: [],
});
```

The same class will now result in a call like:

```ts
ɵsetClassMetadata(..., {
  bar: [{type: Input}],
});
```

Fixes #30569

PR Close #33514
2019-11-13 13:49:31 -08:00
Alex Rickabaugh
8d0de89ece refactor(ivy): split type into type, internalType and adjacentType (#33533)
When compiling an Angular decorator (e.g. Directive), @angular/compiler
generates an 'expression' to be added as a static definition field
on the class, a 'type' which will be added for that field to the .d.ts
file, and a statement adjacent to the class that calls `setClassMetadata()`.

Previously, the same WrappedNodeExpr of the class' ts.Identifier was used
within each of this situations.

In the ngtsc case, this is proper. In the ngcc case, if the class being
compiled is within an ES5 IIFE, the outer name of the class may have
changed. Thus, the class has both an inner and outer name. The outer name
should continue to be used elsewhere in the compiler and in 'type'.

The 'expression' will live within the IIFE, the `internalType` should be used.
The adjacent statement will also live within the IIFE, the `adjacentType` should be used.

This commit introduces `ReflectionHost.getInternalNameOfClass()` and
`ReflectionHost.getAdjacentNameOfClass()`, which the compiler can use to
query for the correct name to use.

PR Close #33533
2019-11-05 17:25:01 +00:00
crisbeto
14c4b1b205 refactor(ivy): remove ngBaseDef (#33264)
Removes `ngBaseDef` from the compiler and any runtime code that was still referring to it. In the cases where we'd previously generate a base def we now generate a definition for an abstract directive.

PR Close #33264
2019-10-25 13:11:34 -07:00
JoostK
8d15bfa6ee fix(ivy): allow abstract directives to have an invalid constructor (#32987)
For abstract directives, i.e. directives without a selector, it may
happen that their constructor is called explicitly from a subclass,
hence its parameters are not required to be valid for Angular's DI
purposes. Prior to this commit however, having an abstract directive
with a constructor that has parameters that are not eligible for
Angular's DI would produce a compilation error.

A similar scenario may occur for `@Injectable`s, where an explicit
`use*` definition allows for the constructor to be irrelevant. For
example, the situation where `useFactory` is specified allows for the
constructor to be called explicitly with any value, so its constructor
parameters are not required to be valid. For `@Injectable`s this is
handled by generating a DI factory function that throws.

This commit implements the same solution for abstract directives, such
that a compilation error is avoided while still producing an error at
runtime if the type is instantiated implicitly by Angular's DI
mechanism.

Fixes #32981

PR Close #32987
2019-10-25 12:13:23 -07:00
Alex Rickabaugh
b381497126 feat(ngcc): add a migration for undecorated child classes (#33362)
In Angular View Engine, there are two kinds of decorator inheritance:

1) both the parent and child classes have decorators

This case is supported by InheritDefinitionFeature, which merges some fields
of the definitions (such as the inputs or queries).

2) only the parent class has a decorator

If the child class is missing a decorator, the compiler effectively behaves
as if the parent class' decorator is applied to the child class as well.
This is the "undecorated child" scenario, and this commit adds a migration
to ngcc to support this pattern in Ivy.

This migration has 2 phases. First, the NgModules of the application are
scanned for classes in 'declarations' which are missing decorators, but
whose base classes do have decorators. These classes are the undecorated
children. This scan is performed recursively, so even if a declared class
has a base class that itself inherits a decorator, this case is handled.

Next, a synthetic decorator (either @Component or @Directive) is created
on the child class. This decorator copies some critical information such
as 'selector' and 'exportAs', as well as supports any decorated fields
(@Input, etc). A flag is passed to the decorator compiler which causes a
special feature `CopyDefinitionFeature` to be included on the compiled
definition. This feature copies at runtime the remaining aspects of the
parent definition which `InheritDefinitionFeature` does not handle,
completing the "full" inheritance of the child class' decorator from its
parent class.

PR Close #33362
2019-10-25 09:16:50 -07:00
JoostK
3858b26211 refactor(ivy): mark synthetic decorators explicitly (#33362)
In ngcc's migration system, synthetic decorators can be injected into a
compilation to ensure that certain classes are compiled with Angular
logic, where the original library code did not include the necessary
decorators. Prior to this change, synthesized decorators would have a
fake AST structure as associated node and a made-up identifier. In
theory, this may introduce issues downstream:

1) a decorator's node is used for diagnostics, so it must have position
information. Having fake AST nodes without a position is therefore a
problem. Note that this is currently not a problem in practice, as
injected synthesized decorators would not produce any diagnostics.

2) the decorator's identifier should refer to an imported symbol.
Therefore, it is required that the symbol is actually imported.
Moreover, bundle formats such as UMD and CommonJS use namespaces for
imports, so a bare `ts.Identifier` would not be suitable to use as
identifier. This was also not a problem in practice, as the identifier
is only used in the `setClassMetadata` generated code, which is omitted
for synthetically injected decorators.

To remedy these potential issues, this commit makes a decorator's
identifier optional and switches its node over from a fake AST structure
to the class' name.

PR Close #33362
2019-10-25 09:16:49 -07:00
JoostK
31b9492951 feat(ngcc): migrate services that are missing @Injectable() (#33362)
A class that is provided as Angular service is required to have an
`@Injectable()` decorator so that the compiler generates its injectable
definition for the runtime. Applications are automatically migrated
using the "missing-injectable" schematic, however libraries built for
older version of Angular may not yet satisfy this requirement.

This commit ports the "missing-injectable" schematic to a migration that
is ran when ngcc is processing a library. This ensures that any service
that is provided from an NgModule or Directive/Component will have an
`@Injectable()` decorator.

PR Close #33362
2019-10-25 09:16:49 -07:00
JoostK
a42057d0f8 fix(ivy): support abstract directives in template type checking (#33131)
Recently it was made possible to have a directive without selector,
which are referred to as abstract directives. Such directives should not
be registered in an NgModule, but can still contain decorators for
inputs, outputs, queries, etc. The information from these decorators and
the `@Directive()` decorator itself needs to be registered with the
central `MetadataRegistry` so that other areas of the compiler can
request information about a given directive, an example of which is the
template type checker that needs to know about the inputs and outputs of
directives.

Prior to this change, however, abstract directives would only register
themselves with the `MetadataRegistry` as being an abstract directive,
without all of its other metadata like inputs and outputs. This meant
that the template type checker was unable to resolve the inputs and
outputs of these abstract directives, therefore failing to check them
correctly. The typical error would be that some property does not exist
on a DOM element, whereas said property should have been bound to the
abstract directive's input.

This commit fixes the problem by always registering the metadata of a
directive or component with the `MetadataRegistry`. Tests have been
added to ensure abstract directives are handled correctly in the
template type checker, together with tests to verify the form of
abstract directives in declaration files.

Fixes #30080

PR Close #33131
2019-10-24 12:44:30 -07:00