Previously, NgtscProgram lived in the main @angular/compiler-cli package
alongside the legacy View Engine compiler. As a result, the main package
depended on all of the ngtsc internal packages, and a significant portion of
ngtsc logic lived in NgtscProgram.
This commit refactors NgtscProgram and moves the main logic of compilation
into a new 'core' package. The new package defines a new API which enables
implementers of TypeScript compilers (compilers built using the TS API) to
support Angular transpilation as well. It involves a new NgCompiler type
which takes a ts.Program and performs Angular analysis and transformations,
as well as an NgCompilerHost which wraps an input ts.CompilerHost and adds
any extra Angular files.
Together, these two classes are used to implement a new NgtscProgram which
adapts the legacy api.Program interface used by the View Engine compiler
onto operations on the new types. The new NgtscProgram implementation is
significantly smaller and easier to reason about.
The new NgCompilerHost replaces the previous GeneratedShimsHostWrapper which
lived in the 'shims' package.
A new 'resource' package is added to support the HostResourceLoader which
previously lived in the outer compiler package.
As a result of the refactoring, the dependencies of the outer
@angular/compiler-cli package on ngtsc internal packages are significantly
trimmed.
This refactoring was driven by the desire to build a plugin interface to the
compiler so that tsc_wrapped (another consumer of the TS compiler APIs) can
perform Angular transpilation on user request.
PR Close#34887
Previously, the template type-checker would always construct a generic
template context type with correct bounds, even when strictTemplates was
disabled. This meant that type-checking of expressions involving that type
was stricter than View Engine.
This commit introduces a 'strictContextGenerics' flag which behaves
similarly to other 'strictTemplates' flags, and switches the inference of
generic type parameters on the component context based on the value of this
flag.
PR Close#34649
It is now an error if '"fullTemplateTypeCheck"' is disabled while
`"strictTemplates"` is enabled, as enabling the latter implies that the
former is also enabled.
PR Close#34195
Now that `@angular/localize` can interpret multiple legacy message ids in the
metablock of a `$localize` tagged template string, this commit adds those
ids to each i18n message extracted from component templates, but only if
the `enableI18nLegacyMessageIdFormat` is not `false`.
PR Close#34135
In ViewEngine we were only generating code for exported classes, however with Ivy we do it no matter whether the class has been exported or not. These changes add an extra flag that allows consumers to opt into the ViewEngine behavior. The flag works by treating non-exported classes as if they're set to `jit: true`.
Fixes#33724.
PR Close#33921
For abstract directives, i.e. directives without a selector, it may
happen that their constructor is called explicitly from a subclass,
hence its parameters are not required to be valid for Angular's DI
purposes. Prior to this commit however, having an abstract directive
with a constructor that has parameters that are not eligible for
Angular's DI would produce a compilation error.
A similar scenario may occur for `@Injectable`s, where an explicit
`use*` definition allows for the constructor to be irrelevant. For
example, the situation where `useFactory` is specified allows for the
constructor to be called explicitly with any value, so its constructor
parameters are not required to be valid. For `@Injectable`s this is
handled by generating a DI factory function that throws.
This commit implements the same solution for abstract directives, such
that a compilation error is avoided while still producing an error at
runtime if the type is instantiated implicitly by Angular's DI
mechanism.
Fixes#32981
PR Close#32987
The template type checking abilities of the Ivy compiler are far more
advanced than the level of template type checking that was previously
done for Angular templates. Up until now, a single compiler option
called "fullTemplateTypeCheck" was available to configure the level
of template type checking. However, now that more advanced type checking
is being done, new errors may surface that were previously not reported,
in which case it may not be feasible to fix all new errors at once.
Having only a single option to disable a large number of template type
checking capabilities does not allow for incrementally addressing newly
reported types of errors. As a solution, this commit introduces some new
compiler options to be able to enable/disable certain kinds of template
type checks on a fine-grained basis.
PR Close#33365
This commit refactors the aliasing system to support multiple different
AliasingHost implementations, which control specific aliasing behavior
in ngtsc (see the README.md).
A new host is introduced, the `PrivateExportAliasingHost`. This solves a
longstanding problem in ngtsc regarding support for "monorepo" style private
libraries. These are libraries which are compiled separately from the main
application, and depended upon through TypeScript path mappings. Such
libraries are frequently not in the Angular Package Format and do not have
entrypoints, but rather make use of deep import style module specifiers.
This can cause issues with ngtsc's ability to import a directive given the
module specifier of its NgModule.
For example, if the application uses a directive `Foo` from such a library
`foo`, the user might write:
```typescript
import {FooModule} from 'foo/module';
```
In this case, foo/module.d.ts is path-mapped into the program. Ordinarily
the compiler would see this as an absolute module specifier, and assume that
the `Foo` directive can be imported from the same specifier. For such non-
APF libraries, this assumption fails. Really `Foo` should be imported from
the file which declares it, but there are two problems with this:
1. The compiler would have to reverse the path mapping in order to determine
a path-mapped path to the file (maybe foo/dir.d.ts).
2. There is no guarantee that the file containing the directive is path-
mapped in the program at all.
The compiler would effectively have to "guess" 'foo/dir' as a module
specifier, which may or may not be accurate depending on how the library and
path mapping are set up.
It's strongly desirable that the compiler not break its current invariant
that the module specifier given by the user for the NgModule is always the
module specifier from which directives/pipes are imported. Thus, for any
given NgModule from a particular module specifier, it must always be
possible to import any directives/pipes from the same specifier, no matter
how it's packaged.
To make this possible, when compiling a file containing an NgModule, ngtsc
will automatically add re-exports for any directives/pipes not yet exported
by the user, with a name of the form: ɵngExportɵModuleNameɵDirectiveName
This has several effects:
1. It guarantees anyone depending on the NgModule will be able to import its
directives/pipes from the same specifier.
2. It maintains a stable name for the exported symbol that is safe to depend
on from code on NPM. Effectively, this private exported name will be a
part of the package's .d.ts API, and cannot be changed in a non-breaking
fashion.
Fixes#29361
FW-1610 #resolve
PR Close#33177
As a hack to get the Ivy compiler ngtsc off the ground, the existing
'allowEmptyCodegenFiles' option was used to control generation of ngfactory
and ngsummary shims during compilation. This option was selected since it's
enabled in google3 but never enabled in external projects.
As ngtsc is now mature and the role shims play in compilation is now better
understood across the ecosystem, this commit introduces two new compiler
options to control shim generation:
* generateNgFactoryShims controls the generation of .ngfactory shims.
* generateNgSummaryShims controls the generation of .ngsummary shims.
The 'allowEmptyCodegenFiles' option is still honored if either of the above
flags are not set explicitly.
PR Close#33256
For v9 we want the migration to the new i18n to be as
simple as possible.
Previously the developer had to positively choose to use
legacy messsage id support in the case that their translation
files had not been migrated to the new format by setting the
`legacyMessageIdFormat` option in tsconfig.json to the format
of their translation files.
Now this setting has been changed to `enableI18nLegacyMessageFormat`
as is a boolean that defaults to `true`. The format is then read from
the `i18nInFormat` option, which was previously used to trigger translations
in the pre-ivy angular compiler.
PR Close#33053
The `$localize` library uses a new message digest function for
computing message ids. This means that translations in legacy
translation files will no longer match the message ids in the code
and so will not be translated.
This commit adds the ability to specify the format of your legacy
translation files, so that the appropriate message id can be rendered
in the `$localize` tagged strings. This results in larger code size
and requires that all translations are in the legacy format.
Going forward the developer should migrate their translation files
to use the new message id format.
PR Close#32937
This commit switches the default value of the enableIvy flag to true.
Applications that run ngc will now by default receive an Ivy build!
This does not affect the way Bazel builds in the Angular repo work, since
those are still switched based on the value of the --define=compile flag.
Additionally, projects using @angular/bazel still use View Engine builds
by default.
Since most of the Angular repo tests are still written against View Engine
(particularly because we still publish VE packages to NPM), this switch
also requires lots of `enableIvy: false` flags in tsconfigs throughout the
repo.
Congrats to the team for reaching this milestone!
PR Close#32219
This option makes ngc behave as tsc, and was originally implemented before
ngtsc existed. It was designed so we could build JIT-only versions of
Angular packages to begin testing Ivy early, and is not used at all in our
current setup.
PR Close#32219
Optimizations to skip compiling source files that had not changed
did not account for the case where only a resource file changes,
such as an external template or style file.
Now we track such dependencies and trigger a recompilation
if any of the previously tracked resources have changed.
This will require a change on the CLI side to provide the list of
resource files that changed to trigger the current compilation by
implementing `CompilerHost.getModifiedResourceFiles()`.
Closes#30947
PR Close#30954
Template type-checking is enabled by default in the View Engine compiler.
The feature in Ivy is not quite ready for this yet, so this flag will
temporarily control whether templates are type-checked in ngtsc.
The goal is to remove this flag after rolling out template type-checking in
google3 in Ivy mode, and making sure the feature is as compatible with the
View Engine implementation as possible.
Initially, the default value of the flag will leave checking disabled.
PR Close#29698
This commit adds a `tracePerformance` option for tsconfig.json. When
specified, it causes a JSON file with timing information from the ngtsc
compiler to be emitted at the specified path.
This tracing system is used to instrument the analysis/emit phases of
compilation, and will be useful in debugging future integration work with
@angular/cli.
See ngtsc/perf/README.md for more details.
PR Close#29380
Currently setting `enableIvy` to true runs a hybrid mode of `ngc` and `ngtsc`. This is counterintuitive given the name of the flag itself.
This PR makes the `true` value equivalent to the previous `ngtsc`, and `ngtsc` becomes an alias for `true`. Effectively this removes the hybrid mode as well since there's no other way to enable it.
PR Close#28616
The ultimate goal of this commit is to make use of fileNameToModuleName to
get the module specifier to use when generating an import, when that API is
available in the CompilerHost that ngtsc is created with.
As part of getting there, the way in which ngtsc tracks references and
generates import module specifiers is refactored considerably. References
are tracked with the Reference class, and previously ngtsc had several
different kinds of Reference. An AbsoluteReference represented a declaration
which needed to be imported via an absolute module specifier tracked in the
AbsoluteReference, and a RelativeReference represented a declaration from
the local program, imported via relative path or referred to directly by
identifier if possible. Thus, how to refer to a particular declaration was
encoded into the Reference type _at the time of creation of the Reference_.
This commit refactors that logic and reduces Reference to a single class
with no subclasses. A Reference represents a node being referenced, plus
context about how the node was located. This context includes a
"bestGuessOwningModule", the compiler's best guess at which absolute
module specifier has defined this reference. For example, if the compiler
arrives at the declaration of CommonModule via an import to @angular/common,
then any references obtained from CommonModule (e.g. NgIf) will also be
considered to be owned by @angular/common.
A ReferenceEmitter class and accompanying ReferenceEmitStrategy interface
are introduced. To produce an Expression referring to a given Reference'd
node, the ReferenceEmitter consults a sequence of ReferenceEmitStrategy
implementations.
Several different strategies are defined:
- LocalIdentifierStrategy: use local ts.Identifiers if available.
- AbsoluteModuleStrategy: if the Reference has a bestGuessOwningModule,
import the node via an absolute import from that module specifier.
- LogicalProjectStrategy: if the Reference is in the logical project
(is under the project rootDirs), import the node via a relative import.
- FileToModuleStrategy: use a FileToModuleHost to generate the module
specifier by which to import the node.
Depending on the availability of fileNameToModuleName in the CompilerHost,
then, a different collection of these strategies is used for compilation.
PR Close#28523
With #28594 we refactored the `@angular/compiler` slightly to
allow opting out from external symbol re-exports which are
enabled by default.
Since symbol re-exports only benefit projects which have a
very strict dependency enforcement, external symbols should
not be re-exported by default as this could grow the size of
factory files and cause unexpected behavior with Angular's
AOT symbol resolving (e.g. see: #25644).
Note that the common strict dependency enforcement for source
files does still work with external symbol re-exports disabled,
but there are also strict dependency checks that enforce strict
module dependencies also for _generated files_ (such as the
ngfactory files). This is how Google3 manages it's dependencies
and therefore external symbol re-exports need to be enabled within
Google3.
Also "ngtsc" also does not provide any way of using external symbol
re-exports, so this means that with this change, NGC can partially
match the behavior of "ngtsc" then (unless explicitly opted-out).
As mentioned before, internally at Google symbol re-exports need to
be still enabled, so the `ng_module` Bazel rule will enable the symbol
re-exports by default when running within Blaze.
Fixes#25644.
PR Close#28633
This commit adds tracking of modules, directives, and pipes which are made
visible to consumers through NgModules exported from the package entrypoint.
ngtsc will now produce a diagnostic if such classes are not themselves
exported via the entrypoint (as this is a requirement for downstream
consumers to use them with Ivy).
To accomplish this, a graph of references is created and populated via the
ReferencesRegistry. Symbols exported via the package entrypoint are compared
against the graph to determine if any publicly visible symbols are not
properly exported. Diagnostics are produced for each one which also show the
path by which they become visible.
This commit also introduces a diagnostic (instead of a hard compiler crash)
if an entrypoint file cannot be correctly determined.
PR Close#27743
This commit takes the first steps towards ngtsc producing real
TypeScript diagnostics instead of simply throwing errors when
encountering incorrect code.
A new class is introduced, FatalDiagnosticError, which can be thrown by
handlers whenever a condition in the code is encountered which by
necessity prevents the class from being compiled. This error type is
convertable to a ts.Diagnostic which represents the type and source of
the error.
Error codes are introduced for Angular errors, and are prefixed with -99
(so error code 1001 becomes -991001) to distinguish them from other TS
errors.
A function is provided which will read TS diagnostic output and convert
the TS errors to NG errors if they match this negative error code
format.
PR Close#25647
Bazel has a restriction that a single output (eg. a compiled version of
//packages/common) can only be produced by a single rule. This precludes
the Angular repo from having multiple rules that build the same code. And
the complexity of having a single rule produce multiple outputs (eg. an
ngc-compiled version of //packages/common and an Ivy-enabled version) is
too high.
Additionally, the Angular repo has lots of existing tests which could be
executed as-is under Ivy. Such testing is very valuable, and it would be
nice to share not only the code, but the dependency graph / build config
as well.
Thus, this change introduces a --define flag 'compile' with three potential
values. When --define=compile=X is set, the entire build system runs in a
particular mode - the behavior of all existing targets is controlled by
the flag. This allows us to reuse our entire build structure for testing
in a variety of different manners. The flag has three possible settings:
* legacy (the default): the traditional View Engine (ngc) build
* local: runs the prototype ngtsc compiler, which does not rely on global
analysis
* jit: runs ngtsc in a mode which executes tsickle, but excludes the
Angular related transforms, which approximates the behavior of plain
tsc. This allows the main packages such as common to be tested with
the JIT compiler.
Additionally, the ivy_ng_module() rule still exists and runs ngc in a mode
where Ivy-compiled output is produced from global analysis information, as
a stopgap while ngtsc is being developed.
PR Close#24056
This commit adds a new compiler pipeline that isn't dependent on global
analysis, referred to as 'ngtsc'. This new compiler is accessed by
running ngc with "enableIvy" set to "ngtsc". It reuses the same initialization
logic but creates a new implementation of Program which does not perform the
global-level analysis that AngularCompilerProgram does. It will be the
foundation for the production Ivy compiler.
PR Close#23455
This allows a bundle index to be re-exported by a higher-level module without fear of collisions.
Under bazel, we always set the prefix to be underscore-joined workspace, package, label
PR Close#23007
ngc knows to filter out d.ts inputs, but the logic accidentally
depended on whether it had a previous Program lying around.
Fixing that logic puts ngc on the fast code path, but in that code
path it must be able to merge tsickle EmitResults, so we need to
plumb the tsickle.mergeEmitResults function through all the intervening
APIs. The bulk of this change is that plumbing.
PR Close#22899
BREAKING CHANGE:
The `<template>` tag was deprecated in Angular v4 to avoid collisions (i.e. when
using Web Components).
This commit removes support for `<template>`. `<ng-template>` should be used
instead.
BEFORE:
<!-- html template -->
<template>some template content</template>
# tsconfig.json
{
# ...
"angularCompilerOptions": {
# ...
# This option is no more supported and will have no effect
"enableLegacyTemplate": [true|false]
}
}
AFTER:
<!-- html template -->
<ng-template>some template content</ng-template>
PR Close#22783
When angularCompilerOptions { enableResourceInlining: true }, we replace all templateUrl and styleUrls properties in @Component with template/styles
PR Close#22615
The "enableIvy" compiler option is the initial implementation
of the Render3 (or Ivy) code generation. This commit enables
generation generating "Hello, World" (example in the test)
but not much else. It is currenly only useful for internal Ivy
testing as Ivy is in development.
PR Close#21427
The errors produced when error were encountered while interpreting the
content of a directive was often incomprehencible. With this change
these kind of error messages should be easier to understand and diagnose.
PR Close#20459
The error collector changes behavior of the metadata resolver
in ways that haven't been fully hardened. This changes limits
its use to the lazy route detection and the language service.
Issue: #19906
PR Close#19912
Usages of `NgTools_InternalApi_NG_2` from `@angular/compiler-cli` will now
throw an error.
Adds `listLazyRoutes` to `@angular/compiler-cli/ngtools2.ts` for getting
the lazy routes of a `ng.Program`.
PR Close#19836
If no user files changed:
- only type check the changed generated files
Never emit non changed generated files
- we still calculate them, but don’t send them through
TypeScript to emit them but cache the written files instead.
PR Close#19646
For now, we always create all generated files, but diff them
before we pass them to TypeScript.
For the user files, we compare the programs and only emit changed
TypeScript files.
This also adds more diagnostic messages if the `—diagnostics` flag
is passed to the command line.
Added the compiler options `strictInjectionParameters` that defaults
to `false`. If enabled the compiler will report errors for parameters
of an `@Injectable` that cannot be determined instead of generating a
warning.
This is planned to be switched to default to `true` for Angular 6.0.