This is in preparation of using the `KnownFn` type for known TypeScript
helpers (in addition to built-in functions/methods). This will in turn
allow simplifying the detection of both imported and emitted TypeScript
helpers.
PR Close#35191
Previously, the compiler performed an incremental build by analyzing and
resolving all classes in the program (even unchanged ones) and then using
the dependency graph information to determine which .js files were stale and
needed to be re-emitted. This algorithm produced "correct" rebuilds, but the
cost of re-analyzing the entire program turned out to be higher than
anticipated, especially for component-heavy compilations.
To achieve performant rebuilds, it is necessary to reuse previous analysis
results if possible. Doing this safely requires knowing when prior work is
viable and when it is stale and needs to be re-done.
The new algorithm implemented by this commit is such:
1) Each incremental build starts with knowledge of the last known good
dependency graph and analysis results from the last successful build,
plus of course information about the set of files changed.
2) The previous dependency graph's information is used to determine the
set of source files which have "logically" changed. A source file is
considered logically changed if it or any of its dependencies have
physically changed (on disk) since the last successful compilation. Any
logically unchanged dependencies have their dependency information copied
over to the new dependency graph.
3) During the `TraitCompiler`'s loop to consider all source files in the
program, if a source file is logically unchanged then its previous
analyses are "adopted" (and their 'register' steps are run). If the file
is logically changed, then it is re-analyzed as usual.
4) Then, incremental build proceeds as before, with the new dependency graph
being used to determine the set of files which require re-emitting.
This analysis reuse avoids template parsing operations in many circumstances
and significantly reduces the time it takes ngtsc to rebuild a large
application.
Future work will increase performance even more, by tackling a variety of
other opportunities to reuse or avoid work.
PR Close#34288
As part of incremental compilation performance improvements, we need
to track the dependencies of files due to expressions being evaluated by
the `PartialEvaluator`.
The `PartialEvaluator` now accepts a `DependencyTracker` object, which is
used to track which files are visited when evaluating an expression.
The interpreter computes this `originatingFile` and stores it in the evaluation
`Context` so it can pass this to the `DependencyTracker.
The `IncrementalState` object implements this interface, which allows it to be
passed to the `PartialEvaluator` and so capture the file dependencies.
PR Close#30238
This commit changes the partial evaluation mechanism to propagate
DynamicValue errors internally during evaluation, and not to "poison"
entire data structures when a single value is dynamic. For example,
previously if any entry in an array was dynamic, evaluating the entire
array would return DynamicValue. Now, the array is returned with only
the specific dynamic entry as DynamicValue.
Instances of DynamicValue also report the node that was determined to
be dynamic, as well as a potential reason for the dynamic-ness. These
can be nested, so an expression `a + b` may have a DynamicValue that
indicates the 'a' term was DynamicValue, which will itself contain a
reason for the dynamic-ness.
This work was undertaken for the implementation of listLazyRoutes(),
which needs to partially evaluate provider arrays, parts of which are
dynamic and parts of which contain useful information.
PR Close#27697
This refactoring moves code around between a few of the ngtsc subpackages,
with the goal of having a more logical package structure. Additional
interfaces are also introduced where they make sense.
The 'metadata' package formerly contained both the partial evaluator,
the TypeScriptReflectionHost as well as some other reflection functions,
and the Reference interface and various implementations. This package
was split into 3 parts.
The partial evaluator now has its own package 'partial_evaluator', and
exists behind an interface PartialEvaluator instead of a top-level
function. In the future this will be useful for reducing churn as the
partial evaluator becomes more complicated.
The TypeScriptReflectionHost and other miscellaneous functions have moved
into a new 'reflection' package. The former 'host' package which contained
the ReflectionHost interface and associated types was also merged into this
new 'reflection' package.
Finally, the Reference APIs were moved to the 'imports' package, which will
consolidate all import-related logic in ngtsc.
PR Close#27743