Translation of WriteKeyExpr expressions was not implemented in the ngtsc
expression translator. This resulted in binding expressions like
"target[key] = $event" not compiling.
This commit fixes the bug by implementing WriteKeyExpr translation.
PR Close#28523
During analysis, the `ComponentDecoratorHandler` passes the component
template to the `parseTemplate()` function. Previously, there was little or
no information about the original source file, where the template is found,
passed when calling this function.
Now, we correctly compute the URL of the source of the template, both
for external `templateUrl` and in-line `template` cases. Further in the
in-line template case we compute the character range of the template
in its containing source file; *but only in the case that the template is
a simple string literal*. If the template is actually a dynamic value like
an interpolated string or a function call, then we do not try to add the
originating source file information.
The translator that converts Ivy AST nodes to TypeScript now adds these
template specific source mappings, which account for the file where
the template was found, to the templates to support stepping through the
template creation and update code when debugging an Angular application.
Note that some versions of TypeScript have a bug which means they cannot
support external template source-maps. We check for this via the
`canSourceMapExternalTemplates()` helper function and avoid trying to
add template mappings to external templates if not supported.
PR Close#28055
The TypeTranslatorVisitor visitor returned strings because before it wasn't possible to transform declaration files directly through the TypeScript custom transformer API.
Now that's possible though, so it should return nodes instead.
PR Close#28342
Currently the ImportManager class handles various rewriting actions of
imports when compiling @angular/core. This is required as code compiled
within @angular/core cannot import from '@angular/core'. To work around
this, imports are rewritten to get core symbols from a particular file,
r3_symbols.ts.
In this refactoring, this rewriting logic is moved out of the ImportManager
and put behind an interface, ImportRewriter. There are three implementers
of the interface:
* NoopImportRewriter, used for compiling all non-core packages.
* R3SymbolsImportRewriter, used when ngtsc compiles @angular/core.
* NgccFlatImportRewriter, used when ngcc compiles @angular/core (special
logic is needed because ngcc has to rewrite imports in flat bundles
differently than in non-flat bundles).
This is a precursor to using this rewriting logic in other contexts besides
the ImportManager.
PR Close#27998
If a template contains specific TypeScript syntax, such as a non-null
assertion, the code that is emitted from ngcc into a JavaScript bundle
should not retain such syntax as it is invalid in JS.
A full-blown TypeScript emit of a complete ts.SourceFile would be
required to be able to emit JS and possibly downlevel into a lower
language target, which is not an option for ngcc as it currently
operates on partial ASTs, not full source files.
Instead, ngtsc no longer produces TypeScript specific syntax in the first
place, such that TypeScript print logic will only generate JS code.
PR Close#27051
When ngtsc compiles @angular/core, it rewrites core imports to the
r3_symbols.ts file that exposes all internal symbols under their
external name. When creating the FESM bundle, the r3_symbols.ts file
causes the external symbol names to be rewritten to their internal name.
Under ngcc compilations of FESM bundles, the indirection of
r3_symbols.ts is no longer in place such that the external names are
retained in the bundle. Previously, the external name `ɵdefineNgModule`
was explicitly declared internally to resolve this issue, but the
recently added `setClassMetadata` was not declared as such, causing
runtime errors.
Instead of relying on the r3_symbols.ts file to perform the rewrite of
the external modules to their internal variants, the translation is
moved into the `ImportManager` during the compilation itself. This
avoids the need for providing the external name manually.
PR Close#27055
This commit introduces the setClassMetadata() private function, which
adds metadata to a type in a way that can be accessed via Angular's
ReflectionCapabilities. Currently, it writes to static fields as if
the metadata being added was downleveled from decorators by tsickle.
The plan is for ngtsc to emit code which calls this function, passing
metadata on to the runtime for testing purposes. Calls to this function
would then be tree-shaken away for production bundles.
Testing strategy: proper operation of this function will be an integral
part of TestBed metadata overriding. Angular core tests will fail if this
is broken.
PR Close#26860
Uglify and other tree-shakers attempt to determine if the invocation
of a function is side-effectful, and remove it if so (and the result
is unused). A /*@__PURE__*/ annotation on the call site can be used
to hint to the optimizer that the invocation has no side effects and
is safe to tree-shake away.
This commit adds a 'pure' flag to the output AST function call node,
which can be used to signal to downstream emitters that a pure
annotation should be added. It also modifies ngtsc's emitter to
emit an Uglify pure annotation when this flag is set.
Testing strategy: this will be tested via its consumers, by asserting
that pure functions are translated with the correct comment.
PR Close#26860
Template type-checking will make use of expression and statement
translation as well as the ImportManager, so this code needs to
live in a separate build target which can be depended on by both
the main ngtsc transform as well as the template type-checking
mechanism. This refactor introduces a separate build target
for that code.
PR Close#26203